在舰船移动网络中,数据特征的多维复杂属性对信息的提取和融合有较大影响。通过分析舰船移动网络通信数据的特点,将多特征信息融合方法结合小波算法和BP神经网络算法,并应用于舰船移动网络通信数据的特征提取和融合。对多个传感器获取的舰船移动网络通信数据进行预处理,得到多维复杂属性的综合信息,实现对舰船移动网络通信数据进行分类、筛选和预测。通过实验证明该方法能够有效降低复杂度,提高舰船移动网络通信数据处理的准确性和可靠性。
In ship mobile networks, the multi-dimensional complex attributes of data features have a great impact on information extraction and fusion. By analyzing the characteristics of ship mobile network communication data, the multi-feature information fusion method is combined with wavelet algorithm and BP neural network algorithm, and applied to the feature extraction and fusion of ship mobile network communication data. The ship mobile network communication data obtained by multiple sensors is preprocessed, and the comprehensive information of multi-dimensional complex attributes is obtained. The classification, screening and prediction of ship mobile network communication data are realized. The experimental results show that this method can effectively reduce the complexity and improve the accuracy and reliability of ship mobile network communication data processing.
2023,45(16): 153-156 收稿日期:2023-2-4
DOI:10.3404/j.issn.1672-7649.2023.16.032
分类号:TN919
作者简介:华创立(1979-),男,硕士,副教授,研究方向为网络工程技术
参考文献:
[1] 刘佳, 韩冰, 吴中岱, 等. 面向北极航道的通信导航保障系统设计[J]. 上海船舶运输科学研究所学报, 2023, 46(2): 6-12+32.
[2] 宋溱, 庞波波, 翁艳云, 等. 北斗短报文在全球海上遇险与安全通信领域的应用与展望[J]. 中国航海, 2022, 45(4): 65-69+77.
[3] 燕翔, 周斐, 乔美生, 等. 船舶综合内部电话通信系统设计与实现[J]. 电声技术, 2022, 46(12): 116-118+126.
[4] 吕瑾文, 陈先桥. 远程监控通信下拥挤水域船舶混合跟踪算法[J]. 长江信息通信, 2022, 35(12): 1-3.
[5] 蔡新梅. 船舶通信装备技术专业虚拟仿真建设探究[J]. 船舶职业教育, 2023, 11(3): 36–39
[6] 王玉国, 郑齐清. 基于LoRa的钢制船舶通信系统电波传播特性研究[J]. 广州航海学院学报, 2023, 31(2): 23-27+33.