针对传统无人艇通信距离短,功能少的问题,设计一种新的无人艇航行控制器。首先在试验用的无人艇上搭载并调试好各种通信和控制设备,然后在VS2017环境中编写控制程序,使之具备实现岸站与无人艇的通信、数据采集、下达运动控制指令等功能,并在无人艇上装备航海雷达,在航行过程中不断扫描水域环境,提取附近的障碍物信息。最后进行拖曳水池试验和湖试,验证无人艇的操纵性能和所编程序的有效性。试验结果表明,利用所设计的无人艇控制器及编写的程序能实现无人艇自主航行,并采取合理的措施避让障碍物,在软件地图中可以显示无人艇的运动轨迹。
In order to solve the problem of short communication distance and few functions for the traditional unmanned surface vehicle(USV), a new USV controller is designed. Firstly, various communication and control equipment needed are installed on the experimental USV, and debugging the functions of each part. Then the control program for the USV is written and compiled in the VS2017 environment so that the software can achieve the functions of communication between the shore station and the USV, data acquisition and giving motion control commands, and the nautical radar on the USV scans the water environment and provides information about nearby obstacles while the USV is sailing. Finally, towing tank testing and lake testing were conducted to verify the manoeuvrability of the USV and the effectiveness of the written program. The testing results show that the designed USV controller and the corresponding control program together can fulfil the basic requirements for the autonomous navigation of the USV, and it can take reasonable measures to avoid obstacles, and display the motion trajectory of the USV in the software map.
2023,45(17): 79-82 收稿日期:2022-08-10
DOI:10.3404/j.issn.1672-7649.2023.17.016
分类号:U661.3
基金项目:国家重点研发计划项目(2016YFC1400202);广东省科技计划项目(2015B010919006)
作者简介:潘选任(1995-),男,硕士研究生,研究方向为新型船舶与海洋结构物设计与开发
参考文献:
[1] 胡智焕, 杨子恒, 刘笑成, 等. 基于航海雷达的无人艇路径规划算法研究[J]. 中国科学:技术科学, 2021(1): 1–9
[2] 文元桥, 杨吉, 李通, 等. 一种面向科研试验的无人艇[J]. 船舶工程, 2019, 41(1): 11–16,19
[3] 陈卓, 金建海, 张波, 等. 水面无人艇自主导航与控制系统的设计与实现[J]. 中国造船, 2020, 61(S1): 89–96 CHEN Zhuo, JIN Jian-hai, ZHANG Bo, et al. Design and implementation of autonomous navigation and control system for unmanned surface vehicle[J]. Shipbuilding of China, 2020, 61(S1): 89–96
[4] 阚亚雄, 卢道华, 仲伟波, 等. 小型无人艇集成控制系统设计与实验研究[J]. 舰船科学技术, 2016, 38(19): 61–71,77 KAN Ya-xiong, LU Dao-hua, ZHONG Wei-bo, et al. Design and experience of the small unmanned surface vehicle integrated control system[J]. Ship Science and Technology, 2016, 38(19): 61–71,77
[5] JIAN Zheng, FEI Meng, YUN Li, et al. Design and experimental testing of a free-running ship motion control platform[J]. IEEE Access, 2017(11): 4690–4696
[6] 彭潜. 基于电子海图无人艇人机交互系统设计与实现[D]. 海南: 海南大学, 2020.
[7] 闫勋, 袁辉, 甄庆喆, 等. 基于Pixhawk开源飞控项目的无人艇开发[J]. 舰船科学技术, 2020, 42(5): 148–151
[8] MANLEY J E. Development of the autonomous surface craft "ACES"[J]. MTS/IEEE Conference Proceedings, 1997(9): 827–832
[9] SONG H, LEE K, KIM D H. Obstacle avoidance system with LiDAR sensor based fuzzy control for an autonomous unmanned ship[C]// 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), 2018(8): 718–722.
[10] CACCIA M, BONO R, BRUZZONE G, et al. Design and Exploitation of an Autonomous Surface Vessel for the Study of Sea-Air Interactions[C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona.
[11] NAEEM W, SUTTON R, CHUDLEY J. Modelling and control of an unmanned surface vehicle for environmental monitoring[C]// UKACC International Control Conference. Glasgow, Scotland, UK: 2006.
[12] 孔庆福, 吴家明, 贾野, 等. 舰船喷水推进技术研究[J]. 舰船科学技术, 2004, 26(3): 28–30 KONG Qing-fu, WU Jia -ming, JIA Ye, et al. Research on warship waterjet propulsion[J]. Ship Science and Technology, 2004, 26(3): 28–30