电磁热耦合分析是一种计算永磁同步电机电磁性能和热性能的有效方法,为实现耦合场的高效准确计算,建立了一种结合二维静磁场有限元模型和等效热网络模型的电磁热耦合高效计算模型。首先,基于磁密时空变换公式,推导了考虑材料温升特性的电磁损耗计算模型,并与二维时步有限元法进行对比,相同硬件条件下,计算时间减少约79%;然后,基于传热学定律,建立了电机的等效热网络温度场分析模型,并推导了节点温升计算的状态空间方程。最后,以一台表贴式永磁电机为例,与三维有限元耦合模型进行对比,温度场计算结果最大误差为5.3 K,计算时间减少约95.2%,表明该模型可在保证计算精度的前提下提高电磁热耦合分析效率。
Electromagnetic-thermal coupling field analysis is a powerful tool to analyze electromagnetic and thermal performance of permanent magnet synchronous motor (PMSM). In order to efficiently and accurately calculate the coupling field, an electromagnetic-thermal coupling model based on 2D magnetostatic finite-element analysis(FEA) and lumped parameter thermal network (LPTN) was established. Firstly, based on the flux density space-time transformation, electromagnetic loss model considering the temperature characteristics of materials was built and compared with 2D time-step FEA, the calculation time was reduced by about 79% under the same hardware condition. Secondly, the equivalent thermal network method was established based on the heat transfer laws, and the state space equation for nodes temperature-rising calculation was derived. Finally, the proposed coupling field was compared with the 3D FE coupling model on a surface-mounted PMSM, the maximum error of temperature field is 5.3 K and the calculation time was reduced by about 95.2%. The result shows that the proposed model greatly reduces the computation time under the premise of ensuring the accuracy.
2023,45(17): 118-124 收稿日期:2022-07-23
DOI:10.3404/j.issn.1672-7649.2023.17.023
分类号:TM351
基金项目:国家自然科学基金资助项目(52107063)
作者简介:刘佳豪(1998-),男,硕士研究生,研究方向为永磁电机的分析与设计
参考文献:
[1] 李勇, 吴佳鑫, 马鹏程, 等. 飞行器用永磁电机系统的功率密度与需求展望[J]. 电机与控制学报, 2022, 26(2): 1–9 LI Yong, WU Jia-xin, MA Peng-cheng, et al. Analysis of power density and prospects of future technology requirement of permanent magnet motors used in aircrafts[J]. Electric Machines and Control, 2022, 26(2): 1–9
[2] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(S1): 22–29 WANG Xiao-fei, DAI Yin, LUO Jian. Waterway design and temperature field analysis of vehicle permanent magnet synchronous motor based on fluid-solid coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 22–29
[3] 付兰芳, 孙鹤旭, 王华君, 等. 基于永磁双转子电机调速的新型风力发电系统设计[J]. 电力系统自动化, 2014, 38(15): 25–29 FU Lan-fang, SUN He-xu, WANG Hua-jun, et al. Design of a novel wind power generation system based on speed regulation of permanent magnet double-rotor motor[J]. Automation of Electric Power Systems, 2014, 38(15): 25–29
[4] 鲍海静. 飞轮储能用高速永磁同步电机设计及关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[5] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1–9 CHEN Pin, TANG Ren-yuan, TONG Wen-min, et al. Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1–9
[6] 董剑宁, 黄允凯, 金龙, 等. 高速永磁电机设计与分析技术综述[J]. 中国电机工程报, 2014, 34(27): 4640–4653 DONG Jian-ning, HUANG Yun-kai, JIN Long, et al. Review on high speed permanent magnet machines including design and analysis technologies[J]. Proceedings of the CSEE, 2014, 34(27): 4640–4653
[7] VESE I C, MARIGNETTI F, Radulescu M M. Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor[J]. IEEE Transactions on Industrial Electronics, 2009, 57(1): 320–326
[8] JOO D, CHO J H, WOO K, et al. Electromagnetic field and thermal linked analysis of interior permanent-magnet synchronous motor for agricultural electric vehicle[J]. IEEE transactions on magnetics, 2011, 47(10): 4242–4245
[9] 韩雪岩, 张华伟, 贾建国, 等. 基于等效热网络法的轴向磁通永磁电机热分析[J]. 微电机, 2016, 49(4): 6–10 HAN Xue-yan, ZHANG Hua-wei, JIA Jian-guo, et al. Thermal analysis of axial flux permanent magnet motor based on equivalent thermal network method[J]. Micromotors, 2016, 49(4): 6–10
[10] LI G J, OJEDA J, HOANG E, et al. Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles[J]. IEEE Transactions on magnetics, 2011, 47(4): 839–847
[11] GONZALEZ D A, SABAN D M. Study of the copper losses in a high-speed permanent-magnet machine with form-wound windings[J]. IEEE Transactions on Industrial Electronics, 2013, 61(6): 3038–3045
[12] IONEL D M, POPESCU M. Ultrafast finite-element analysis of brushless PM machines based on space–time transformations[J]. IEEE Transactions on Industry Applications, 2010, 47(2): 744–753
[13] 黄允凯, 胡虔生, 朱建国. 永磁无刷直流电机铁耗计算方法[J]. 电机与控制应用, 2007(4): 6–9 HUANG Yun-kai, HU Qian-sheng, ZHU Jian-guo. Methods for calculating core losses in permanent magnet motors[J]. Electric Machines & Control Application, 2007(4): 6–9
[14] 王晓远, 高鹏. 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 31(16): 26–33 WANG Xiao-yuan, GAO Peng. Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 26–33
[15] MELLOR P H, ROBERTS D, TURNER D R. Lumped parameter thermal model for electrical machines of TEFC design[C]//IEE Proceedings B (Electric Power Applications). IET Digital Library, 1991, 138(5): 205–218.