为开展螺旋缠绕复合材料圆柱壳屈曲特性试验与数值研究,首先制作3个长径比(L/R)1.9~3.9的螺旋缠绕复合材料圆柱壳,试验研究其静水压力下失效模式。理论模型、有限元模型和试验结果具有良好的一致性。根据NASA SP-8007规范、Shen理论及数值模型,分析讨论不同长径比对复合材料圆柱壳屈曲载荷的影响规律。结果表明:NASA规范与Shen理论值与试验载荷比值均小于1,采用层合板理论模型预测结果相对保守;当L/R<2.9时,采用线性屈曲分析预测结果相比考虑材料渐进损伤的弧长法较为接近实验值,最大误差为8.7%;当L/R>2.9时,宜采用非线性弧长法模型预测更为保守,其误差为0.8%,圆柱壳破坏直接由失稳引起,未达到强度极限。
The current study was an experimental, and numerical investigation of the buckling of helically wound composite cylinders. Composite cylinders of three lengths (L/R=1.9~3.9) were manufactured. Externally hydrostatic tests are conducted to determine the collapse modes of the three cylinders. The theoretical, experimental and numerical data agree well with each other. Subsequently, buckling loads calculated using finite element analysis results and empirical method results according to NASA SP-8007 and Shen’s formulae, were compared with test results. Effect of the length to diameter ratio on buckling behaviour of composite cylindrical shells was investigated. The results show that the ratio of theoretical value calculated by NASA SP-8700 and Shen’s formulae to test loads is less than 1. The prediction results of laminated plate theory model are relatively conservative. When L/R < 2.9, the predicted results of linear buckling analysis are closer to the test values than the arc length method considering progressive damage of materials, and the maximum difference is 8.7%. When L/R > 2.9, the nonlinear arc length method is more conservative, with a difference of 0.8%. The failure of the cylindrical shell is directly caused by instability and does not reach the strength limit.
2023,45(18): 58-65 收稿日期:2022-06-08
DOI:10.3404/j.issn.1672-7649.2023.18.010
分类号:U674.941
基金项目:国家自然科学基金资助项目(52071160,52171258);江苏省研究生科研创新计划项目(KYCX21_3498)
作者简介:左新龙(1991-),男,博士,讲师,研究方向为高端船舶与海洋工程装备
参考文献:
[1] 左新龙, 唐文献, 张建, 等. 多蛋形交接耐压壳屈曲特性试验与数值研究[J]. 船舶力学, 2019, 23(4): 430–438
ZUO Xinlong, TANG Wenxian, ZHANG Jian, et al. Experimental and numerical study on buckling of the multi-segment egg-shaped pressure hull[J]. Journal of Ship Mechanics, 2019, 23(4): 430–438
[2] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210–221
LI Wenyue, WANG Shuai, LIU Tao, et al. Current status and progress on pressure hull structure of manned deep submersible[J]. Shipbuilding of China, 2016, 57(1): 210–221
[3] 张建, 周通, 王纬波, 等. 模态缺陷条件下复合材料柱形壳屈曲特性[J]. 复合材料学报, 2017, 34(3): 588–596
ZHANG Jian, ZHOU Tong, WANG Weibo, et al. Buckling property of a composite cylindrical shell considering mode imperfections[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 588–596
[4] 罗珊, 王纬波. 潜水器耐压壳结构研究现状及展望[J]. 舰船科学技术, 2019, 41(19): 11–20
LUO Shan, WANG Weibo. Status and prospects on the pressure shell structure of submersible[J]. Ship Science and Technology, 2019, 41(19): 11–20
[5] PERRY T G, DOUGLUS C D, GORMAN J J. Analytical design procedures for buckling dominated graphite/epoxy pressure hulls[J]. SNAME Transactions, 1992, 100: 93–115
[6] ASME Boiler and Pressure Vessel Code[S]. Section X: Fiber-reinforced Plastic Pressure Vessel,2007.
[7] NASA SP-8007. Buckling of thin-walled circular cylinders[S]. National Aeronautics and Space Administration, USA, 1968: 19–21.
[8] SHEN Ke-chun,LI Zhun,WEI Ran-feng, et al. Buckling and strain response of a filament winding composite cylindrical shell subjected to hydrostatic pressure: analytical solution and testing[J]. Defence Technology, 2021.
[9] MESSAGER T. Buckling of imperfect laminated cylinders under hydrostatic pressure[J]. Composite Structures, 2001, 53: 301–307
[10] MESSAGER T, PYRZ M, GINESTE B, et al. Optimal laminations of thin underwater composite cylindrical vessels[J]. Composite Structures, 2002, 58: 529–537
[11] 沈克纯, 潘光, 姜军, 等. 静水压力下纤维缠绕圆柱壳体的稳定性分析[J]. 西北工业大学学报, 2018, 36(5): 839–847
SHEN Kechun, PAN Guang, JIANG Jun, et al. Stability of filament-wound composite cylinders subjected to hydrostatic pressure[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 839–847
[12] 沈克纯, 潘光, 施瑶, 等. 静水压力下碳纤维缠绕复合材料圆柱壳体应变特性及承载能力研究[J]. 西北工业大学学报, 2020, 185(5): 26–32
SHEN Kechun, PAN Guang, SHI Yao, et al. Exploring strain characteristics and bearing capacity of a carbon filament-wound composite cylindrical shell under hydrostatic pressure[J]. Journal of Northwestern Polytechnical University, 2020, 185(5): 26–32
[13] SHEN K C, PAN G. Optimizing the buckling strength of filament winding composite cylinders under hydrostatic pressure[J]. Journal of Reinforced Plastics and Composites, 2018, 37(13): 892–904
[14] SHEN K C, PAN G, LU J F. Buckling and layer failure of composite laminated cylinders subjected to hydrostatic pressure[J]. Science & Engineering of Composite Materials, 2017, 24(3): 41−422.
[15] SHEN K, PAN G. Buckling optimization of composite cylinders for underwater vehicle applications under Tsai-Wu failure criterion constraint[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(4): 534–544
[16] SHEN K C, PAN G, SHI Y. Optimization of composites shell subjected to hydrostatic pressure to maximize design pressure factor[J]. Journal of Ship Mechanics, 2017(12): 1551–1563
[17] MOON C J, KIM I H, CHOI B H, et al. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle Applications[J]. Composite Structures, 2010, 92(9): 2241–2251
[18] CONNY S, DIRK R, DIETER K. Experimental and numerical study on the influence of imperfections on the buckling load of unstiffened CFRP shells[J]. Composite Structures, 2015, 131(4): 128–138
[19] 李卓禹, 朱锡, 李华东. 静压作用下夹芯复合材料圆柱壳失效模式的有限元分析[J]. 中国舰船研究, 2015, 10(3): 45–50
LI Zhuoyu, ZHU Xi, LI Huadong. Finite element analysis of the failure mode of composite sandwich cylinders subjected to hydrostatic pressure[J]. Chinese Journal of Ship Research, 2015, 10(3): 45–50
[20] ROSENOW M. Wind angle effects in glass fibre-reinforced polyester filament wound pipes[J]. Composites, 1984, 15(2): 144–152
[21] HASHIN Z, ROTEM A. A Fatigue Failure Criterion for Fiber Reinforced Materials[J]. Journal of Composite Materials, 1973, 7: 448–464
[22] A J Z, A J J, B F W, et al. Buckling behavior of double-layer and single-layer stainless steel cylinders under external pressure[J]. Thin-Walled Structures, 2021, 161: 107485
[23] CHO YS, OH D H, PALK J K. An empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external pressure loads[J]. Ocean Engineering, 2019, 172: 191–198
[24] HUR Seong-Hwa, SON Hee-Jin, KWEON Jin-Hwe, et al. Postbuckling of composite cylinders under external hydrostatic pressure[J]. Composite Structures, 2008, 86(1): 114–124
[25] ZHU Yongmei, DAI Yongjian, MA Qingli, et al. Buckling of externally pressurized cylindrical shell: A comparison of theoretical and experimental data[J]. Thin-Walled Structures, 2018, 129: 309–316
[26] LI Zhun, SHEN Ke-chun, ZHANG Xin-hu, et al. Buckling of composite cylindrical shells with ovality and thickness variation subjected to hydrostatic pressure[J]. Defence Technology, 2021.