为了研究冲击环境下燃气轮机转子柔性支撑系统响应传递特性,建立转子轴承柔性支撑系统理论模型并编程对其进行数值求解,将燃气轮机实例模型计算得到的转子支撑系统响应与理论模型编程求解结果进行对比,分析并完善转子支撑系统响应传递特性。结果表明:在冲击环境下燃气轮机机匣由外环到内环结构响应几乎不发生变化;理论模型与燃机实例有限元模型计算得到的转子各响应结果整体变化趋势大致相同;由于柔性支撑刚度较大,经过柔性支撑传递后各转子响应变化很小。本文研究成果可为燃气轮机转子柔性支撑系统的抗冲击设计提供技术支撑。
In order to study the response and transfer characteristics of the gas turbine rotor flexible support system in the shock environment, a theoretical model of the rotor bearing flexible support system was established and numerically solved with the programmed program. The response of the rotor support system calculated by the gas turbine model was compared with the results of the theoretical model programming solution, and the response transfer characteristics of the rotor support system was analyzed and improved. The results show that the structural response of the gas turbine casing hardly changes from the outer ring to the inner ring under the shock environment. The overall variation trend of each response result of the rotor calculated by the theoretical model and the gas turbine example finite element model is roughly the same. Due to the large stiffness of the flexible support, the response of each rotor changes little after the flexible support is transmitted. The research results can provide technical support for the shock-resistant design of the gas turbine rotor flexible support system.
2023,45(18): 99-104 收稿日期:2022-10-07
DOI:10.3404/j.issn.1672-7649.2023.18.016
分类号:U664.131
基金项目:国家科技重大专项(2017-V-0002-0051-001)
作者简介:王腾(1995-),男,硕士,助理工程师,研究方向为舰艇爆炸冲击与防护
参考文献:
[1] FARHATH. Operation, maintenance, and repair of land-based gas turbines[M]. Amsterdam: Elsevier Press, 2021: 1–30.
[2] LATARCH M. Pounder's marine diesel engines and gas turbines 10th ed [M]. Oxford: Butterworth-Heinemann Press, 2021: 851–892.
[3] 闻雪友, 任兰学, 祁龙, 等. 舰船燃气轮机发展现状、方向及关键技术[J]. 推进技术, 2020, 41(11): 2401–2407
[4] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse[J]. Marine Structures, 2014, 39: 90–117
[5] VERNON T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. ADA178096, 1986.
[6] 计晨, 汪玉, 杨莉, 等. 柴油机主要部件冲击响应时域分析[J]. 兵工学报, 2011, 32(4): 391–396
[7] 温建明, 冯奇. 弹性限位浮筏系统的随机振动建模与算法[J]. 振动与冲击, 2011, 30(7): 153–156
WEN Jianming, FENG Qi. Stochastic vibration model and algorithm for a floating raft with elastic limiters[J]. Journal of Vibration and Shock, 2011, 30(7): 153–156
[8] 冯麟涵, 汪玉, 杜俭业, 等. 舰船设备冲击响应计算方法等效性研究[J]. 船舶工程, 2011, 33(S2): 210–214
FENG Linhan, WANG Yu, DU Jianye, et al. Research on equivalency of shock response calculation methods for equipments on board[J]. Ship Engineering, 2011, 33(S2): 210–214
[9] 王平团, 葛晨光. 舰用燃气轮机抗冲击性仿真评估方法[J]. 舰船科学技术, 2011, 33(S1): 43–48
WANG Pingtuan, GE Chenguang. Simulation evaluation of warship gas turbine’s shock resistance ability[J]. Ship Science and Technology, 2011, 33(S1): 43–48
[10] 吴敌, 吴广明, 李正国, 等. 水下非接触爆炸冲击下舱段模型的仿真分析[J]. 舰船科学技术, 2016, 38(9): 37–41
WU Di, WU Guangming, LI Zhengguo, et al. Numerical simulation analysis of cabin models subjected to underwater explosion shock wave[J]. Ship Science and Technology, 2016, 38(9): 37–41
[11] 万强, 吴新跃, 谢最伟, 等. 某燃气轮机高压转子—涡轮抗冲击性能研究[J]. 机械设计与制造, 2012(2): 184–186
[12] ZHAO S T, WANG N, WANG X, et al. Numerical investigation of dynamic responses of ship structure and gas turbine subjected to underwater explosion[J]. Journal of Ship Mechanics, 2021, 25(6): 815–827
[13] 韩东江, 郝龙, 毕春晓, 等. 燃气轮机转子系统典型振动特性试验研究[J]. 振动与冲击, 2021, 40(4): 87–93
HAN Dongjiang, HAO Long, BI Chunxiao, et al. An experimental study on typical vibration characteristics of a gas turbine rotor system[J]. Journal of Vibration and Shock, 2021, 40(4): 87–93
[14] 韩璐, 张明远, 冯麟涵, 等. 基于冲击响应等效的燃机支撑结构冲击试验研究[J]. 振动与冲击, 2020, 39(18): 242–247.
HAN Lu, ZHANG Mingyuan, FENG Linhan, et al. Impact test study of a gas turbine support structure based on impact response equivalence[J]. Journal of Vibration and Shock, 2020, 39(18): 242–247.