为研究五模点阵环状结构对于碰撞冲击应力波的调控效果,基于坐标变换理论和增材制造技术,设计制作了五模点阵环状结构试验模型,通过冲击试验及仿真发现,五模点阵环状结构内环迎冲面的应变峰值明显小于内环背冲面,应力在五模点阵环状结构中有明显分叉趋势,可以有效降低迎冲面的应力集中。相较于等质量实心圆环,五模点阵环状结构内环迎冲面应变峰值降低了53%,内环背冲面应变峰值升高了18%。计算并分析五模点阵胞元的频散曲面发现,频散曲面等值线法向量的方向分布可以准确反映材料中的能流方向,在此基础上研究了胞元结构对能流特性的影响。相关结论可为潜艇抗冲击防护提供一定参考。
In order to study the regulation effect of the pentamode lattice ring structure on the impact stress wave, based on coordinate transformation theory and additive manufacturing technology ,an experimental model of the pentamode lattice ring structure is designed and manufactured. Through the impact test and simulation, it is found that the peak strain of the pentamode lattice ring structure on the upstream surface is significantly smaller than that on the back surface. The stress has obvious bifurcation tendency in the pentamode lattice ring structure, which can effectively reduce the stress concentration on the upstream surface. Compared with the equal mass solid ring, the peak strain of the test model on the upstream surface is reduced by 53%, while the peak strain on the back surface is increased by 18%. It is found that the direction distribution of the normal vector of the isoline of the dispersion surface can accurately reflect the direction of the energy flow in the material. On this basis, the influence of cell structure on the energy flow characteristics is studied. The relevant conclusions can provide some reference for submarine resisting impact protection.
2023,45(19): 17-24 收稿日期:2022-09-01
DOI:10.3404/j.issn.1672-7649.2023.19.003
分类号:TB33
基金项目:国家自然科学基金面上项目(51879270)
作者简介:韩邦熠(1997-),男,硕士研究生,研究方向为舰艇结构抗爆抗冲击
参考文献:
[1] MILTON G W, CHERKAEV A V. Which elasticity tensors are realizable?[J]. Journal of Engineering, Materials and Technology, 1995, 117: 483–493
[2] MILTON G W, BRIANE M, WILLIS J R. On cloaking for elasticity and physical equations with a transformation invariant form[J]. New Journal of Physics, 2006, 8(10): 248
[3] NORRIS A N. Acoustic cloaking theory[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2008, 464(2097): 2411–2434
[4] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Acoustic cloaking using layered pentamode materials[J]. Journal of the Acoustical Society of America, 2010, 127(5): 2856
[5] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Broadband optimization of a pentamode-layered spherical acoustic waveguide[J]. Wave Motion, 2011, 48(6): 505–514
[6] ARAVANTINOS-ZAFIRIS N, SIGALAS M M, ECONOMOU E N. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure[J]. Journal of Applied Physics, 2014, 116(13).
[7] LAYMAN C N, NAIFY C J, MARTIN T P, et al. Highly anisotropic elements for acoustic pentamode applications[J]. Phys Rev Lett, 2013, 111(2): 024302
[8] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22): 221906
[9] CHEN Y, LIU X, HU G. Latticed pentamode acoustic cloak[J]. SciENTIFIC RepORTS, 2015, 5: 15745
[10] LI Q, VIPPERMAN J S. Three-dimensional pentamode acoustic metamaterials with hexagonal unit cells[J]. The Journal of the Acoustical Society of America, 2019, 145(3): 1372–1377
[11] 褚佳伟. 基于五模超材料的力学隐身斗篷结构设计[D]. 成都: 电子科技大学, 2019.
[12] AMENDOLA A, BENZONI G, FRATERNALIi F. Non-linear elastic response of layered structures, alternating pentamode lattices and confinement plates[J]. Composites Part B:Engineering, 2017, 115: 117–123
[13] AMENDOLA A, CARPENTICES G, FEO L, et al. Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates[J]. Composite Structures, 2016, 157: 71–77
[14] AMENDOLA A, SMITH C J, GOODALL R, et al. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates[J]. Composite Structures, 2016, 142: 254–262
[15] LYMPEROPOULOS P N, THEOTOKOGLOU E E. Computational analysis of pentamode metamaterials for antiseismic design[J]. Procedia Structural Integrity, 2020, 26: 263–268
[16] 魏培君. 弹性波理论[M]. 北京: 科学出版社, 2021: 27−39.