本文基于Voronoi原理对不规则几何形状和随机厚度的三维碎冰进行参数化设计,并且采用Ls-dyna流固耦合方法对船体的首柱倾角、外倾角和水线进角这3个参数进行改变,数值仿真并分析船舶所受的碎冰阻力。发现较小的首柱倾角使海冰下压的能力增强,冰层较容易发生弯曲破坏,有利于增强极地破冰船的破冰性能。较大的水线进角增强了船首排开碎冰的能力,有利于增强极地破冰船的破冰能力。破冰船首所受碎冰阻力并非单纯地随着外倾角的增减而呈现出单调变化,而是一种波动性变化规律。
In this paper, based on Voronoi principle, parametric design is carried out for 3D crushed ice with irregular geometry and random thickness, and Ls-dyna fluid structure coupling method is used to change the three parameters of the bow column inclination, camber and waterline angle of entry of the hull, and numerical simulation and analysis of the crushed ice resistance suffered by the ship. It is found that the smaller stem angle increases the ability of sea ice to depress, and the ice layer is more prone to bending failure, which is conducive to enhancing the ice breaking performance of polar icebreakers. The larger angle of entry of the waterline enhances the ability of the bow to discharge ice, which is conducive to enhancing the ice breaking ability of polar ice breakers. The ice breaking resistance of the bow of the icebreaker does not simply show a monotonous change with the increase or decrease of the camber, but a law of fluctuation.
2023,45(20): 32-39 收稿日期:2022-10-7
DOI:10.3404/j.issn.1672-7649.2023.20.006
分类号:U674.21
基金项目:国家自然科学基金资助项目(51509114);江苏省基础研究计划(自然科学基金)资助项目(BK2012696,BK2009722)
作者简介:张宇(1997-),男,硕士研究生,研究方向为船体冰载荷
参考文献:
[1] CLEARY P W, SAWLEY M L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge[J]. Applied Mathematical Modelling, 2002, 26(2): 89–111
[2] LUO W, JIANG D, Wu T, et al. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel[J]. Ocean Engineering, 2020, 196: 237–245
[3] 童波, 涂勋程, 谷家扬, 等. 基于参数化设计的浮冰区船舶冰阻力研究[J]. 船舶力学, 2019, 023(7): 755–762
TONG Bo, TU Xun-cheng, GU Jia-yang, et al. Study on ship ice resistance in floating ice area based on parametric design[J]. Ship Mechanics, 2019, 023(7): 755–762
[4] SUN J, HUANG Y. Investigations on the ship-ice impact: Part 1. Experimental methodologies[J]. Marine Structures, 2020, 72: 174–181
[5] HALLQUIST J. LS-DYNA keyword user's manual[S]. Version: 970. 2003: 217-219.
[6] 刚旭皓. 冰区船首部连续破冰模式下破冰阻力研究[D]. 北京: 中国舰船研究院, 2020.
[7] 郭华洛. 基于参数化技术的建筑表皮生成研究[D]. 广州: 广州大学, 2019.
[8] YULMETOV R, LUBBAD R, LØSET S. Planar multi-body model of iceberg free drift and towing in broken ice[J]. Cold Regions Science and Technology, 2016, 121: 154–166
[9] 刘禹. 内河破冰船首部型式研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[10] 中国船级社. 极地船舶指南[S]. 人民交通出版社, 2016.
[11] 毛方云. 基于破冰能力的极地航行船舶首部构型研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.