针对水空跨域航行器在水面垂直起飞时出现的推力损失问题,开展实验测试航行器150 mm直径涵道推进器在距离水面0.1~0.5 m高度垂直推进状态下的推力特性。为分析涵道推进器的近水面推力损失机理,采用多相流计算流体动力学(CFD)仿真对涵道推进器近水面垂直推进工况下的流场进行模拟。仿真发现,推进器尾流冲击水面形成的气水混合物被推进器吸入,使推进器周围空气流动进入不稳定的涡环状态。推进器近水面运转时与空气中同转速下相比产生了推力损失,随着近水面高度的增大,反弹气流的影响减弱,推力损失逐渐减小。
Based on the problem of thrust loss of a water-air cross-domain vehicle when taking off/landing from water surface, the thrust characteristics of the ducted propeller in vertical state in the range from 0.1m to 0.5 m above water surface was tested by some experiments. In order to analyze the near-surface thrust loss mechanisms of the propeller, flow fields of the ducted propeller near the water surface in vertical state are simulated by computational fluid dynamics (CFD) simulations with multiphase flow model. According to the results of the simulations, rebound air-water mixture formed by the wake of propeller impacting water surface is absorbed in by the propeller, so that the propeller enters a kind of unstable vortex ring state. Compared with the same speed in the air, there is thrust loss when the ducted propeller is near water surface in vertical state. As the height from water surface increasing, the influence of the rebound air flow weakens and the thrust loss gradually decreases.
2023,45(20): 67-73 收稿日期:2022-8-1
DOI:10.3404/j.issn.1672-7649.2023.20.012
分类号:V211.45
作者简介:赵一峰(1995-),男,博士研究生,研究方向为跨域航行器动力学建模与仿真
参考文献:
[1] 胡志强, 杨翊, 周振溪, 等. 一种可垂直起降的折叠翼潜空跨域航行器: 中国, 112549885A [P]. 2021-03-26.
HU Z Q, YANG Y, ZHOU Z X, et al. A kind of VTOL water-air cross-domain marine robot with folding wings: China, 112549885A [P]. 2021-03-26.
[2] 胡志强, 杨翊, 耿令波, 等. 多旋翼水空两栖跨域航行器: 中国, 108128450A[P]. 2018-06-08.
HU Z Q, YANG Y, GENG L B, et al. A kind of many rotor water-air amphibious cross-domain marine robot: China, 108128450A[P]. 2018-06-08.
[3] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 航行器, 2018, 40(1): 102–114
YANG X B, LIANG J H, WEN L, et al. Research status of water-air amphibious trans-media unmanned vehicle[J]. Robot, 2018, 40(1): 102–114. (in Chinese)
[4] 唐胜景, 张宝超, 岳彩红, 等. 跨介质飞行器关键技术及飞行动力学研究趋势分析[J]. 飞航导弹, 2021(6): 7–13
TANG S J, ZHANG B C, YUE C H, et al. Analysis of key technologies and flight dynamics research trends of cross-media aircraft[J]. Aerodynamic Missile Journal, 2021(6): 7–13
[5] 刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(S2): 1–14.
LIU X Z, CUI W C. An overview and analysis of the water-air amphibious vehicles[J]. Chinese Journal of Ship Research, 2019, 14(S2): 1–14.
[6] ZUFFEREY R, A. O A, FARINHA A, et al. Consecutive aquatic jump-gliding with water-reactive fuel[J]. Science Robotics, 2019, 4(34).
[7] WEISLER W, STEWART W, ANDERSON M, et al, Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 969–982.
[8] WEISLER W, STEWART W, ANDERSON M, et al. Dynamic modeling of passively draining structures for aerial–aquatic unmanned vehicles[J]. IEEE Journal of Oceanic Engineering, 2019: 1–11.
[9] FABIAN A, FENG Y F, SWARTZ E, et al. Hybrid aerial underwater vehicle[R]. Lexington, USA: MIT Lincoln Lab, 2012.
[10] YAO G C, LIANG J H, WANG T M, et al. Submersible un-manned flying boat: Design and experiment[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2014: 1308–1313.
[11] DREWS P L J, NETO A A, CAMPOS M F M. Hybrid unmanned aerial underwater vehicle: modeling and simulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2014: 4637–4642.
[12] MERCADO RAVELL D, MAIA M, DIEZ F. Modeling and control of unmanned aerial/underwater vehicles using hybrid control[J]. Control Engineering Practice, 2018, 76(7): 112–122
[13] ALZU'BI H, MANSOUR L, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control[J]. Journal of Field Robotics, 2018, 35(5): 764–778
[14] HOU T G, YANG X B, SU H H, et al. Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms[C]//IEEE Proceedings of 2019 International Conference on Robotics and Auto mation(ICRA), 2019.
[15] CHEN Y F, WANG H Q, HELBLING E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science Robotics, 2017, 2(11): eaao5619
[16] 郜天柱, 胡志强, 杨翊, 等. 水空两栖涵道风扇推进器推力理论分析及实验验证[J]. 航行器, 2019, 41(2): 222–231
GAO T Z, HU Z Q, YANG Y, et al. Theoretical analysis and experimental verification on thrust of aquatic-aerial amphibious ducted fan propeller[J]. Robot, 2019, 41(2): 222–231
[17] LEE T E, LEISHMAN J G, RAMASAMY M. Fluid dynamics of interacting blade tip vortices with a ground plane[J]. Journal of the American Helicopter Society, 2010, 55(2): 022005
[18] JARDIN T, PROTHIN S, MAGAÑA C G. Aerodynamic performance of a hovering microrotor in confined environment[J]. Journal of the American Helicopter Society, 2017, 62(2): 1–7
[19] GOURDAIN N, SINGH D, JARDIN T, et al. Analysis of the turbulent wake generated by a micro air vehicle hovering near the ground with a lattice boltzmann method[J]. Journal of the American Helicopter Society, 2017.
[20] 张德良. 计算流体力学教程[M]. 2 版. 北京: 高等教育出版社, 2011.
[21] GREEN R B, GILLIES E A, BROWN R E. The flow field around a rotor in axial descent[J]. Journal of Fluid Mechanics, 2005(354): 237–261
[22] 王适存. 直升机空气动力学[M]. 南京: 南京航空航天大学出版社, 1991.