海上分布式作战是利用海上有人无人平台组成的具备部署分散、信息联通、指控智能、火力集中的作战体系,以较低成本消耗/牵制敌作战力量,对敌形成“非对称”优势。美国是分布式作战概念的提出者及引领者,将其视为应对未来可能发生的大国战争的制胜关键,大力支持DARPA积极开展水下无人平台研制、水下无人体系构建及水下有人无人协同指控等项目。本文以促进水下体系构建、形成有人无人联合作战能力为目标,分析国外典型项目、典型作战模式,总结国外水下无人系统及有人无人协同应用发展趋势,探讨分布式作战概念下的水下有人无人作战新模式,可为水下体系发展及装备研制提供借鉴。
The maritime distributed operations system is composed by manned and unmanned platforms on the sea. The combat system with decentralized deployment, information connectivity, intelligent command and control, and centralized firepower, consume / contain the enemy's combat forces at a lower cost and form an asymmetric advantage over the enemy. The United States is the proponent and leader of the concept of distributed operations, which is regarded as the key to victory in the future major powers' war. It strongly supports DARPA to actively carry out underwater unmanned platform development, Underwater unmanned system construction and underwater manned unmanned cooperative command and control project. In order to promote the construction of our underwater system and form the manned unmanned joint combat capability as the goal, this paper analyzes the typical projects and typical operation modes of foreign countries, summarizes the development trend of foreign underwater unmanned system and manned unmanned cooperative application, and discusses the new mode of manned unmanned combat under the concept of distributed operation, which can provide reference for the development of our underwater system and equipment development.
2023,45(21): 119-124 收稿日期:2022-11-28
DOI:10.3404/j.issn.1672-7649.2023.21.022
分类号:E925.2;E712
作者简介:张杨(1980-),女,博士,高级工程师,研究方向为水下作战系统与指挥控制技术
参考文献:
[1] US Navy. Surface Force Strategy-Return to Sea Control [R]. 2017.01. 09.
[2] 韩毅, 储欣. 分兵集火、凡船皆战——浅析美军“分布式杀伤”概念[J]. 国防科技, 2018, 39(5): 98-103
[3] 黄峻松. 分布式杀伤是海上战争形态的发展趋势[J]. 科技导报, 2018, 36(4): 62-68
[4] 王汉刚, 王桂波. 美国水下战装备体系发展研究舰船科学技术[J]. 舰船科学技术, 2014, 36(6): 98-103Han-Gang Wang, Gui-Bo Wang. Research on the development of US underwater warfare equipment system[J]. Ship Science and Technology, 2014, 36(6): 98-103
[5] US Navy. ANTX-2017. [EB/OL]. [2020-07-09]. https://www.navsea.navy.mil/ Home/Warfare-Centers/NUWC-Newport/ What-We-Do/ANTX-2017.
[6] US Navy. ANTX-2018. [EB/OL]. [2020-07-09]. https://www.navsea.navy.mil/Home/Warfare-Centers/NUWC-Newport/What-We-Do/ANTX-2018.
[7] US Navy. ANTX-2019. [EB/OL]. [2020-07-09]. https://www.navsea.navy.mil/Home/Warfare-Centers/NUWC-Newport/What-We-Do/ANTX-2019.
[8] 王雅琳, 郭佳, 刘都群. 2018年水下无人系统发展综述[J]. 无人系统技术, 2019(4): 20-25
[9] UNDERWOOD A , MURPHY C. Design of a micro-AUV for autonomy development and multi-vehicle systems[C]// OCEANS 2017- Aberdeen. 2017.
[10] Dick Urban. Briefing prepared for the 16th Annual Science and Engineering Technology Conference[R]. Defense Advanced Research Projects Agency. 2015.
[11] GRUND M, FREITAG L, PREISIG J, et al. The PLUSNet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance[C]// OCEANS 2006. IEEE, 2006.
[12] DARPA. Cross domain maritime surveillance and targeting[R]. DARPA-BAA-16-01, Virginia: PARPA, 2015.
[13] 杨智栋, 李荣融, 蔡卫军, 等. 国外水下预置武器发展及关键技术[J]. 水下无人系统学报, 2018, 26(6): 521-526
[14] 邱志明, 罗荣, 王亮, 等. 军事智能技术在海战领域应用的几点思考[J]. 空天防御, 2019, 2(1): 1-5