传统船-机-桨参数匹配还停留在图谱法研究中,不能满足船舶精细化设计要求,为此提出一种船-机-桨参数匹配的新方法。首先,基于船-机-桨匹配动态数学模型构建船-机-桨参数匹配的多目标优化模型;其次,以最小化发动机燃油消耗、最大化推进系统效率及最小化燃烧物排放为目标函数;然后,采用改进的多目标北方苍鹰优化算法(IMONGO)计算船-机-桨匹配参数。最后,使用排序优选技术(TOPSIS)对Pareto解集的性能进行排序,选出排序靠前的匹配参数组合。通过试验验证,燃油消耗率降低5.97%,发动机燃烧物排放中氮氧化物排放体积比降低19.49%,碳烟(soot)排放质量分数降低20.1%,船舶推进系统效率提高到0.59,优化的船-机-桨匹配参数对实际工程设计具有巨大参考价值。
In view of the fact that the traditional ship-engine-propeller parameter matching still remains in the study of mapping method, which cannot meet the requirements of ship refinement design, a new method of ship-engine-propeller parameter matching is proposed. Firstly, a multi-objective optimization model for ship-engine-propeller parameter matching is constructed based on the dynamic mathematical model of ship-engine-propeller matching; secondly, the objective function of minimizing engine fuel consumption, maximizing propulsion system efficiency and minimizing combustion emissions is adopted; then, the improved multi-objective northern hawk optimization algorithm (IMONGO) is used to calculate the ship-engine-propeller matching parameters; finally, the ranking preference technique (TOPSIS) to rank the performance of the Pareto solution set and select the top ranked matching parameter combination. Through experimental verification, the fuel consumption rate is reduced by 5.97%, the NOx emission volume ratio in engine combustion emissions is reduced by 19.49%, the carbon soot emission mass fraction is reduced by 20.1%, and the ship propulsion system efficiency is improved to 0.59. The optimized ship-machine-propeller matching parameters have great reference value for practical engineering design.
2023,45(23): 108-114 收稿日期:2022-09-21
DOI:10.3404/j.issn.1672-7649.2023.23.019
分类号:U677.2
基金项目:广东省海洋经济发展专项资金资助项目(JCKY2021414B011)
作者简介:张增鑫(1998-),男,硕士研究生,研究方向为船舶建造工艺及其装备开发
参考文献:
[1] 李学斌. 多目标遗传算法在水面船舶快速性优化设计中的应用[J]. 江苏科技大学学报(自然科学版), 2008(5): 1–5
LI X B. Application of multi-objective genetic algorithm in the rapidity optimization design of surface ships[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2008(5): 1–5
[2] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法[J]. 物理学报, 2021, 70(16): 147–159
DAI Z H, ZHOU H H, ZHANG X B. A multi-objective optimization approach to modeling the magnetic field of a ship[J]. Journal of Physics, 2021, 70(16): 147–159
[3] 尹德鑫, 张达敏, 蔡朋宸, 等. 改进的麻雀搜索优化算法及其应用[J/OL]. 计算机工程与科学, 2022(44): 10.
[4] 王习昌, 鲍东杰. 改进粒子群算法在LQR半主动悬架的应用[J/OL]. 机械科学与技术, 2023, 42(3): 468-474.
WANG X C, BAO D J. Improved particle swarm algorithm for LQR semi-active suspension [J/OL]. Mechanical Science and Technology, 2023, 42(3): 468-474.
[5] 周源. 基于CFD方法螺旋桨多目标优化研究[D]. 武汉: 武汉理工大学, 2016.
[6] 孙林, 陈辉, 管聪. 内河多工况船机桨匹配优化设计[J]. 中国舰船研究, 2022, 17(1): 187–195
SUN L, CHEN H, GUAN C. Optimal design of propeller matching for inland river vessels with multiple operating conditions[J]. China Ship Research, 2022, 17(1): 187–195
[7] 杨路春, 杨晨俊, 李学斌. 基于多目标进化算法和决策技术的螺旋桨优化设计研究[J]. 中国造船, 2019, 60(3): 55–66
YANG L C, YANG C J, LI X B. Propeller design optimization based on multi-objective evolutionary algorithm and decision technology[J]. China Shipbuilding, 2019, 60(3): 55–66
[8] 杨秀敏, 耿静, 徐游, 等. 基于TOPSIS模型的海南岛土地综合承载力时空变化及障碍度诊断[J/OL]. 生态学报, 2019, 60(3): 55-66.
YANG X M, GENG J, ZHUANG H Y, et al. Diagnosis of spatial and temporal variation of comprehensive land carrying capacity and barrier degree of Hainan Island based on TOPSIS model[J/OL]. Journal of Ecology, 2019, 60(3): 55-66.
[9] GAO S D, PU C H, LI J. et al. Multi-objective optimal control of industrial organic pollutant treatment process[J]. Control Theory and Applications. 2022, 39(1): 187-199.
[10] REN HL, DING Y, SUI C B. Influence of EEDI (Energy Efficiency Design Index) on Ship-Engine-Propeller Matching[J]. Journal Of Marine Science And Engineering, 2019: 7(12).
[11] MARQUES CH, BELCHIOR CRP, CAPRACE JD. Marine propeller parametric optimisation and matching to electric motor[J]. Journal Of the Brazilian Society Of Mechanical Sciences And Engineering. 2019: 41(3).
[12] MARQUES CH, BELCHIOR CRP, CAPRACE JD. Optimising the engine-propeller matching for a liquefied natural gas carrier under rough weather[J]. Applied Energy, 2018(232)187-96.
[13] ZHOU HG, WANG Z, LI L, et al. Line heating process parameter forecasting method based on optimization concept[J]. Advances In Mechanical Engineering, 2022: 14(3).