为保障船舶航行过程中安全可靠,避免航海仪器故障引发大规模航行事故,研究基于DSP的船舶航海仪器故障诊断方法。通过应用DSP技术中的TMS320C2812芯片作为核心处理器,向DSP芯片写入基于支持向量机航海仪器故障诊断算法;通过船舶航海仪器采集传感器,实时采集船舶航海仪器特征信号,经由模数转换器处理后提供至DSP芯片中,在DSP芯片内部通过故障诊断算法诊断不同航海仪器的故障问题,完成故障诊断后,DSP可通过接口电路将诊断结果提供至PC上位机,在上位机中向用户显示航海仪器故障诊断结果。经实验验证,该方法可精准采集航海仪器的运行参数,当进行故障诊断时,可快速、有效地诊断磁罗经、探测仪、日光信号灯等多种仪器的故障情况,保障航海仪器的安全性。
In order to ensure the safety and reliability of ship navigation and avoid large-scale navigation accidents caused by the fault of marine instruments, a fault diagnosis method of marine instruments based on DSP is studied. By using TMS320C2812 chip in DSP technology as the core processor, the navigation instrument fault diagnosis algorithm based on support vector machine is written into DSP chip. Collect sensors from marine instruments, collect characteristic signals of Marine instruments in real time, and then provide them to DSP chip after processing by analog-to-digital converter. In DSP chip, fault diagnosis algorithm is used to diagnose faults of different Marine instruments. After fault diagnosis is completed, DSP can provide the diagnosis results to PC PC through interface circuit. The fault diagnosis results of navigation instruments are displayed to the user in the upper computer. The experiment proves that the method can accurately collect the operating parameters of marine instruments, and diagnose the faults of magnetic compass, detector, daylight signal lamp and other instruments quickly and effectively when fault diagnosis is carried out, so as to ensure the safety of marine instruments.
2023,45(24): 196-199 收稿日期:2023-09-14
DOI:10.3404/j.issn.1672-7649.2023.24.037
分类号:TP23
作者简介:任松涛(1973-),男,讲师,研究方向为航海技术和航海模拟器
参考文献:
[1] 张晓岚. 基于DSP的矿井采煤机状态监测及故障诊断系统设计[J]. 煤炭与化工, 2021, 44(5): 69-72.
ZHANG Xiao-lan. Design of condition monitoring and fault diagnosis system of mining machine based on DSP[J]. Coal and Chemical Industry, 2021, 44(5): 69-72.
[2] 杨启航, 易志为, 黄宁. 基于DSPN的5G工业控制系统业务可用性分析[J]. 系统工程与电子技术, 2023, 45(8): 2634-2642.
YANG Qi-hang, YII Zhi-wei, HUANG Ning. DSPN-based application availability analysis for 5G industrial control systems[J]. Systems Engineering and Electronics, 2023, 45(8): 2634-2642.
[3] 斯园园, 周毅, 孙冰, 等. 基于数字孪生技术开展LNG船舶设备故障诊断及预测[J]. 天津科技, 2023, 50(3): 43-46.
SI Yuan-yuan, ZHOU Yi, SUN Bing, et al. Fault diagnosis and prediction of LNG ship equipment based on digital twin technology[J]. Tianjin Science & Technology, 2023, 50(3): 43-46.
[4] 王世威, 甘辉兵, 胡国彤, 等. 基于粒子群优化混合神经网络的船舶辅锅炉故障诊断[J]. 中国航海, 2022, 45(2): 37-42+55.
WANG Shi-wei, GAN Hui-bing, HU Guo-tong, et al. Application of particle swarm optimizer neural network in fault diagnosis for marine auxiliary boiler[J]. Navigation of China, 2022, 45(2): 37-42+55.
[5] 丁朝君. 一种基于FPGA+DSP高速系统的故障诊断研究[J]. 电声技术, 2021, 45(10): 53-56.
DING Chao-jun. Research on fault diagnosis of high speed system based on FPGA+DSP[J]. Audio Engineering, 2021, 45(10): 53-56.