为了研究导管螺旋桨的推力、扭矩和敞水效率等主要水动力参数和进速系数之间的关系,本文采用物理模型试验和计算流体力学(Computational Fluid Dynamics, CFD)技术相结合的方式分析导管对螺旋桨水动力特性的影响。首先在本校拖曳水池开展导管螺旋桨模型的敞水性能试验然后使用计算流体软件STAR−CCM+对导管桨模型进行数值模拟。在模拟计算中应用多参考系法(Multi Reference Frames,MRF),分别采用不同湍流模型对导管螺旋桨的水动力性能进行计算,并与试验数据进行对比,验证了STAR−CCM+软件模拟可以对导管螺旋桨的水动力性能进行有效预报且使用SST k-ω 湍流模型获得的水动力性能精度更高。研究结果表明,导管螺旋桨更适用于在低进速系数下工作的重载船舶。
In order to study the investigate between the characteristic hydrodynamic parameters and the advance coefficient, this paper uses a combination of physical tests and Computational Fluid Dynamics (CFD) techniques to analyze the effect of the duct on the hydrodynamic characteristics of the propeller. Firstly, the open water performance test of the ducted propeller model was carried out in the towing tank of DLUT and then the numerical simulation of the ducted propeller model was carried out using the computational fluid software STAR−CCM+. In the simulation, Multi Reference Frames (MRF) method was applied to calculate the hydrodynamic performance of the ducted propeller using different turbulence models, and compared with the experimental data. It is verified that STAR−CCM+ software simulation can effectively predict the hydrodynamic performance of the ducted propeller and the accuracy of the hydrodynamic performance obtained by using SST k-ω turbulence model is higher. The results show that the ducted propeller is more suitable for ships operating at low advance coefficients.
2024,46(2): 1-7 收稿日期:2023-01-12
DOI:10.3404/j.issn.1672-7649.2024.02.001
分类号:U664.33
作者简介:李海涛(1976-),男,博士,高级工程师,研究方向为水动力
参考文献:
[1] 盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2009: 177–188.
[2] JOHN A A, CARNEGIE, ALBERT M M. Kort Nozzle[P]. USA, 3499412, 1970.
[3] FEITEN W, BAUER R, LAWITZKY G. Robust obstacle avoidance in unknown and cramped environments [C] // IEEE International Conference on Robotics and Automation, 1994: 2412-2417.
[4] 叶元培, 沈贻德. 双体导管螺旋桨系列试验研究[J]. 中国造船, 1979(2): 3-36.
[5] KERWIN J E, KINNAS S A. A surface panel method for the hydrodynamic analysis of ducted propellers[J]. Transactions. SNAME, 1987(95), 93−122.
[6] KHATIB M. Sensor-based motion control for mobile robots [C] // 5th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2009.
[7] 杨晨俊, 王国强, 杨建民. 导管螺旋桨定常性能理论计算[J]. 上海交通大学学报, 1997, 31(11): 36-39.
[8] 赵强. 导管螺旋桨水动力性能和船尾伴流场的 CFD 模拟[D]. 武汉: 武汉理工大学, 2011.
[9] 胡健, 王楠, 胡洋. 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240-252.
HU Jian, WANG Nan, HU Yang. Performance comparison of accelerating duct and decelerating duct[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 240-252.
[10] 邱鹏, 郑高, 李国诚. 基于 STAR-CCM + 的导管螺旋桨黏性流场计算方法研究[J]. 造船技术研究, 2019(3): 54-58, 64.
[11] 邱鹏, 郑高. 基于重叠网格的导管桨非定常水动力性能数值模拟[J]. 舰船科学技术, 43(4): 73-77.
[12] 吴家鸣, 张强. 三种 CFD 方法计算敞水导管螺旋桨推力 特性结果观察[J]. 广州航海学院学报, 29(3): 56-61.
[13] ITTC–Recommended Procedures and Guidelines, Revision 07[R]. 2017.