本文以深潜装备材料应用需求为导向,深入研究当前各国主要耐压壳体材料和固体浮力材料的应用现状及发展趋势。通过对材料的机械性能、化学成分等指标进行对比分析,提出了当前深潜材料发展遇到的系列技术瓶颈问题和相应解决方案。通过深入分析各国深潜材料的关键技术和性能指标,发现其总体趋势均向着高强度、低密度方向发展,但在尝试进一步提升材料性能指标时,却导致材料出现韧度降低、焊接性能差、吸水率增高等系列缺陷。因此,尝试研发各项性能优异的空心陶瓷和纳米复合材料等新型材料。陶瓷基复合材料和碳纳米管增强浮力材料以其优异的结构强度和抗压性能,必将大幅提升深潜装备的总体性能指标,成为深潜器的重要选材。
The paper guided by the application requirements of deep diving submersible materials, the application status and development trend of the main pressure-resistant shell materials and solid buoyancy materials in various countries are deeply studied. By comparing and analyzing the mechanical properties, chemical components, and other indicators of materials, a series of technical bottlenecks encountered in the development of current deep submergence materials and corresponding solutions are proposed. Through in-depth analysis of key technologies and performance indicators of deep diving materials in various countries, it is found that their overall trend is towards high strength and low density. However, further improving the performance indicators of materials leads to a series of defects such as lower toughness, poor welding performance, and higher water absorption. Therefore, try to develop new materials such as hollow ceramics and nanocomposites with excellent performance. The ceramic composites and carbon nanotube-reinforced buoyancy materials, with their excellent structural strength and compression resistance, will greatly improve the overall performance index of deep submergence equipment and become important materials for building deep submersibles in the future.
2024,46(3): 1-7 收稿日期:2023-01-30
DOI:10.3404/j.issn.1672-7649.2024.03.001
分类号:HT140
基金项目:国家重点研发计划项目(2021YFF0704005)
作者简介:汪文杰(1988-),男,硕士,高级工程师,主要从事海洋科学、海洋工程装备研发等工作
参考文献:
[1] ZHANG Y, DING Z, WANG Y, et al. Determining the damage mechanisms for buoyancy materials of deep-sea manned submersibles[J]. Journal of Coastal Research, 2019, 35(5): 996-1002.
[2] HELAL M, HUANG H, WANG D, et al. Numerical analysis of sandwich composite deep submarine pressure hull considering failure criteria[J]. Journal of Marine Science and Engineering, 2019, 7(10): 377.
[3] GAO J, CHEN J, LIU W, et al. A review on syntactic foam and its application[J]. Materials Review, 2016, 30: 531-535.
[4] QU S, YIN Y. Research status and development trend of service materials in deep sea extreme environment[J]. Cailiao Kexue yu Gongyi/Material Science and Technology, 2019, 27(1): 1-8.
[5] CERIK B C, SHIN H K, CHO S R. Probabilistic ultimate strength analysis of submarine pressure hulls[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(1): 101-115.
[6] 江洪, 王微. 全球深海材料研究概况[J]. 新材料产业, 2013(11): 7-10.
[7] YU S, LI X, GUO X, et al. Curing and characteristics of N, N, N', N'-tetraepoxypropyl-4, 4'-diaminodiphenylmethane epoxy resin-based buoyancy material[J]. Polymers, 2019, 11(7): 1137.
[8] REN S, HU X, REN H, et al. Development of a buoyancy material of hollow glass microspheres/SiO2 for high-temperature application[J]. Journal of Alloys and Compounds, 2017, 721: 213-219.
[9] HOU J, SHI Y, LI Z, et al. Numerical simulation and experimental study on flexible buoyancy material of hollow glass microsphere and silicone rubber for small deep-sea soft robots[J]. Applied Materials Today, 2020, 21: 100875.
[10] 杨建明, 张新宇, 刘朝骏. 高强度钢在潜艇应用中的若干重要问题综述[J]. 中国舰船研究, 2016, 11(1): 27-35.
[11] 张颖, 赖长亮, 和卫平, 等. 潜水器耐压壳结构选材应用综述[J]. 舰船科学技术, 2022, 44(5): 1-6.
[12] 常辉, 董月成, 淡振华, 等. 我国海洋工程用钛合金现状和发展趋势[J]. 中国材料进展, 2020, 39(Z1): 585-590+557-558.
[13] 安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钛工业进展, 2022, 39(4): 34-43.
[14] 杨锐, 马英杰, 程世婧. 海洋观测探测平台关键材料发展与展望[J]. 中国科学院院刊, 2022, 37(7): 881-887.
[15] 蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究[J]. 中国工程科学, 2019, 21(6): 95-101.
[16] 林俊辉, 淡振华, 陆嘉飞, 等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望[J]. 稀有金属材料与工程, 2020, 49(3): 1090-1099.
[17] FENG L, QIAO B, YIQIANG H E, et al. Development of ceramic matrix composite used in deep-sea equipment[J]. Hot Working Technology, 2012, 41(22): 132.
[18] 张晓龙, 冯淼林, 赵敏, 等. 氮化硅陶瓷空心浮力球在内爆临界状态下的失效分析[J]. 海洋工程, 2020, 38(6): 70-76.
[19] LIU Y, LIU W Z, MA CHUN-XIA. Research on preparation and properties of deep-water solid buoyancy material[J]. Ship Science and Technology, 2017, 39(3): 87-90.
[20] 李仙会, 张兆峰, 柯贤朝, 等. 深水固体浮力材料的性能[J]. 工程塑料应用, 2019, 47(4): 19-23.
[21] LIU W D, DAI J H, WU Ping-wei, et al. Research on preparation and properties of solid buoyancy materials based on mixed hollow glass microspheres[J]. Development and Application of Materials, 2014, 48(1): 10165-10168.
[22] WU, S H. MA, R. F. WU, P. W. et al. Compression molding process and performance of hollow glass microsphere/epoxy resin solid buoyancy materials[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2401-2408.
[23] 熊利, 许晓武, 金星. 深海固体浮力材料的研制及性能探讨[J]. 矿冶工程, 2018, 38(5): 33.
[24] WANG N, CHEN X, LI Y, et al. Preparation and compressive performance of an A356 matrix syntactic foam[J]. Materials Transactions, 2018, 59(5): 699-705.
[25] 梅志远, 周晓松, 吴梵. 不同高径比固体浮力材料的单轴压缩变形机制和能量耗散特征[J]. 材料研究学报, 2018, 32(8): 591-598.
[26] JIANG B, BLUGAN G, STURZENEGGER P N, et al. Ceramic spheres-A novel solution to deep sea buoyancy modules[J]. Materials, 2016, 9(7): 529.
[27] SUE R, ANRAN G, XUE D, et al. Preparation and characteristic of a temperature resistance buoyancy material through a gelcasting process[J]. Chemical Engineering Journal, 2016, 288: 59-69.
[28] HUO X J, WANG J J, HU W B, et al. Research on preparation of hollow ceramic microspheres base on the main reaction system of Al + Cr2O3[J]. Journal of Computational and Theoretical Nanoscience, 2012, 9(9): 1537-1540.
[29] 高博, 王景泽, 崔维成. 固体浮力材料研究现状与发展趋势[J]. 中国造船, 2022, 63(4): 226-240.
[30] 衣亚东, 吴平伟, 吴少惠, 等. 深海固体浮力材料挤出成型工艺及性能[J/OL]. 现代塑料加工应用, 2021, 33(4): 5-9.
[31] YA B, WANG Y, MENG L, et al. Study on the performance of syntactic foam reinforced by hybrid functionalized carbon nanotubes[J]. Journal of Applied Polymer Science, 2020, 137(16): 48586.
[32] 黄婷, 马传国, 张红, 等. 多元碳纳米材料协同改性玻璃微珠/环氧树脂复合材料[J]. 复合材料学报, 2020, 37(1): 27.
[33] 余为, 王亚东, 张任良, 等. 碳纤维增强空心玻璃微珠/环氧树脂复合材料的力学性能[J]. 材料研究学报, 2017, 31(4): 300-308.
[34] 王耀声, 亚斌, 周秉文, 等. 碳纤维增强固体浮力材料性能研究[J]. 功能材料, 2018, 49(8): 8205.
[35] BAI S, ZHICHAO M A, WANG Y, et al. Research on preparation and performance of hollow epoxy macrospheres for solid buoyancy material[J]. Development and Application of Materials, 2019, 34(3): 81.