针对LNG在亚临界状态下的工作要求,利用VOF多相流模型对LNG在1 mm、1.5 mm、2 mm和2.5 mm共4种直径微小通道内的沸腾流动与换热特性进行研究,操作压力为0.1 MPa,热通量为40.9~385.4 kW/m2,质量通量为110~600 kg/m2·s。研究结果表明:在直径为1.5 mm、2 mm和2.5 mm的微小通道中,观察到了泡状流、弹状流、波状-环状流、过渡流和雾状流5种流型,而对于直径为1 mm的通道,没有观察到弹状流和过渡流,却出现了受限泡状流和柱塞流,且发现流型随通道直径的减小而转变加快,不同管径中的流型种类以及所占通道比例不同。当通道直径由2.5 mm减小到1 mm时,在波状-环状流区域对流换热系数提高了24.6%,但压降增加了50.1%。当质量通量增加到600 kg/m2·s,对流换热系数提高了22.6%,压降增加了55.8%。
Based on the working requirements of LNG in subcritical state, the boiling flow and heat transfer characteristics of LNG in the mini-channels with diameters of 1.5 mm, 2 mm and 2.5 mm were studied by using VOF phase change model. The operating pressure is 0.1MPa, the heat flux is 40.9 ~ 385.4 kW/m2, and the mass flux is 110 ~ 600 kg/m2·s. The results revealed that bubble, slug, wavy-annular, transition and mist flows in the mini-channels with diameters of 1.5 mm, 2 mm and 2.5 mm were observed. Whereas, for the 1 mm diameter channel, there was no slug and transition flows; however, the confined bubble and plug flows were observed. Also, the transition of flow pattern was accelerated with the decrease of channel diameter, and the type and proportion of flow patterns in different channel diameters were different. When the channel diameter reduced from 2.5 mm to 1 mm, the heat transfer coefficient in the wave-annular flow region was increased by 24.6% while the pressure drop increased by 50.1%. When the mass flux increased from 110 to 600 kg/m2·s, the heat transfer coefficient was enhanced by 22.6% and the pressure drop increased by 55.8%.
2024,46(5): 126-132 收稿日期:2023-03-14
DOI:10.3404/j.issn.1672-7649.2024.05.023
分类号:TE08
基金项目:江苏省海洋与渔业科技创新与推广项目(HY2017-8)
作者简介:龚慧芝(1996-),女,硕士研究生,研究方向为传热传质强化技术与数值模拟
参考文献:
[1] YOUSEFI A, BIROUK M. Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load[J]. Applied Energy, 2017, 189: 492-505,
[2] 胡国强. LNG动力船供气系统设计与换热器研究[D]. 上海: 上海交通大学, 2020.
[3] 赵星霖, 王平阳, 黄佳卉. 带有横向微槽道的超临界LNG紧凑式换热器换热强化模拟研究[J]. 低温工程, 2020(6): 1-8.
[4] KIM I H, NO H C, Physical model development and optimal design of PCHE[J]. Intermediate heat exchangers in HTGRs, Nuclear Engineering and Design, 2012, 1: 243-250.
[5] 路达, 张引弟, 吕国政, 等. 错列正弦型微通道中超临界LNG流动与换热分析[J]. 低温工程, 2021(4): 47-53.
[6] 谢丽懿, 李智强, 丁国. FLNG用印刷板路换热器技术特点及发展趋势[J]. 化工学报, 2019, 70(11): 4101-4112.
[7] 贾丹丹. 印刷板式换热器强化换热理论分析与实验研究[D]. 镇江: 江苏科技大学, 2017.
[8] CUI X, GUO J, HUAI X, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366.
[9] 刘贵军, 陈德奇, 胡练, 等. 基于CFD方法的PCHE窄小流道内超临界CO2流动传热特性数值研究[J]. 核动力工程, 2019, 40(3): 12-16.
[10] ANEESH A M, SHARMA A, SRIVASTAVA A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315.
[11] 何雅玲, 雷勇刚, 田丽婷, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.
[12] BAI Junhua, PAN Jie, HE Xiaoru, et al. Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer[J]. Applied Thermal Engineering, 2020(175): 2271-2281.
[13] KANDLIKAR S G, GRANDE W J, evolution of microchannel flow passages--thermohydraulic performance and fabrication technology[J]. Heat Transfer Engineering,2003, 24(1): 3-17.
[14] HIRJ C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[15] BRACKBILL JU, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics. 1992, 100: 335-354.
[16] SAITOH S, DAIGUJI H, HIHARA E, Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26): 5215-5225.