为了对舰船信息基础设施进行数字化赋能、智能化升级,加快舰船装备数字化发展,需充分融合新一代信息技术,探索下一代舰船信息基础设施数字化装备。本文围绕数字孪生技术发展应用现状,研究符合舰船信息基础设施特点的数字孪生装备,定义舰船信息基础设施数字孪生装备的概念和组成,提出舰船信息基础设施数字孪生装备构建方法,预测舰船信息基础设施数字孪生装备三阶段发展趋势,并在舰船信息基础设施装备上开展智能运维方面的实践。研究成果可作为未来舰船信息基础设施智能化装备的一种新型范式,为舰船信息基础设施数字孪生装备的技术应用及实践提供参考。
In order to digitally empower and intelligently upgrade the ship information infrastructure (SII), and accelerate the digital development of ship equipment, it is necessary to fully integrate new generation information technology and explore the digital equipment of the next generation SII. This paper focus on the current development and application of digital twin technology, research digital twin equipment that conforms to the characteristics of SII, defines the concept and composition of SII digital twin equipment, proposes the construction method of SII digital twin equipment, predicts the three-stage development trend of SII digital twin equipment, and has carried out intelligent operation and maintenance practices on SII equipment. The research results can serve as a new paradigm for future intelligent equipment of SII, providing reference for the technical application and practice of SII digital twin equipment.
2024,46(7): 132-140 收稿日期:2023-4-23
DOI:10.3404/j.issn.1672-7649.2024.07.022
分类号:U674.7;TP301.6
作者简介:马辰(1988-),男,博士,高级工程师,研究方向为舰船信息基础平台
参考文献:
[1] 董晓明. 新一代水面作战系统发展理念及途径[J]. 中国舰船研究, 2015, 10(1): 1-6.
[2] 马辰, 张小凡, 李宁. 舰艇信息基础设施研究进展[J]. 中国舰船研究, 2022, 17(6): 1-14.
[3] TAO F, QI Q. Make more digital twins[J]. Nature, 2019, 573: 490-491.
[4] GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[C]// KAHLEN F J, FLUMERFELT S, ALVESA. Trans-disciplinary perspectives on complex systems. Berlin, Germany: Springer International Publishing, 2017.
[5] 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16.
[6] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Va. , USA: AIAA, 2012: 7274-7260.
[7] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
[8] RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product: literature review and implication in an aircraft[C]//Proceedings of the 22nd ISPE-Inc International Conference on Concurrent Engineering, 2015: 657-666.
[9] GABOR T, BELZNER L, KIERMEIER M, et al. A simulation-based architecture for smart cyber-physical systems[C]//Proceedings of the IEEE International Conference on Autonomic Computing. Washington, D. C. , USA: IEEE, 2016: 374-379.
[10] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
[11] 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405-2418.
[12] 中国信息通信研究院. 数字孪生城市研究报告(2022年)[EB/0L]. http://www.caict.ac.cn/kxyj/qwfb/bps/ 202301/t20230111_414086.htm,2023-01/2023-03-12.
[13] 中国电子技术标准化研究院信息技术研究中心. 城市数字孪生标准化白皮书(2022版) [EB/L]. http://www.cesi.cn/202201/8208.html,2022-01-10/2023-03-02.
[14] 赛迪智库, 赛迪研究院发布《数字孪生白皮书(2019)》[EB/L]. https://www.ccidgroup.com/info/1096/21685.htm, 2019-12-19/2023-03-12.
[15] e-works. 数字孪生与工业智能论坛. [EB/L].https://www.e-works.net.cn/report/2019shuziluans/2019shuziluans.html,2019-10-23/2023-02-13.
[16] 安世亚太科技股份公司数字孪生体实验室. 数字孪生体技术白皮书[EB/L]. http://m.peraglobal.com/upload/contents/2019/12/20191230095610_31637.pdf,2019-12-30/2023-03-12.
[17] 工业4.0研究院. 《数字孪生体报告(2023)》正式发布了 [EB/L]. http://www.innobase.cn/?p=3020,2022-12-16/2023-03-12.
[18] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004(5): 485-489+514.
[19] 段伟. 平行仿真的内涵、发展与应用[J]. 指挥与控制学报, 2019, 5(2): 82-86.
[20] 陶飞, 戚庆林, 王力翚, 等. 数字孪生与信息物理系统——比较与联系[J]. Engineering, 2019, 5(04): 132-149.
[21] 周济, 周艳红, 王柏村, 等. 面向新一代智能制造的人-信息-物理系统(HCPS)[J]. 工程, 2019, 5(4): 1-14.
[22] 韩金朋, 刘忠民, 吕秋云, 等. 元安全: 基于平行安全的元宇宙安全框架[J]. 指挥与控制学报, 2022, 8(3): 249-259.
[23] 于佳慧, 孙宇祥, 项祺, 等. 元宇宙赋能指挥控制: 未来虚实融生的作战推演[J]. 指挥与控制学报, 2022, 8(3): 260-269.
[24] TUEGEL E J, INGRAFFEA A R, Eason T G, et al. Re-engineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 1-14.
[25] GE Aviation. GE signs digital contract with military sealift command to improve mission readiness[EB/OL]. Business Wire. https://www.businesswire.com/news/home/20180205005801/en/GE-Signs-Digital-Contact-Military-Sealift-Command,2018-02-05/2023-03-12.
[26] DAVID B L. Off the eastern seaboard, a US navy missile test could make big waves[EB/OL].https://www.c4isrnet.com/digital-show-dailies/navy-league/2019/04/25/off-the-eastern-seaboard-a-us-navy-missile-test-could-make-big-waves/,2019-04-26/2023-04-01.
[27] ELISHA G. Navwar completes first digital system-of-systems model; increases cybersecurity USS Abraham lincoln. Dvidshub[EB/OL]. https://www.dvidshub.net/news/348667/navwar-completes-first-digital-system-systems-model-increases-cybersecurity-uss-abraham-lincoln,2019-10-22/2023-04-02.
[28] 王旭东, 陈奡, 宦国杨, 等. 面向作战指挥的数字孪生应用[J]. 指挥信息系统与技术, 2021, 12(6): 26-32.
[29] 全球技术地图. 数字孪生技术在智能化战争中的应用[EB/OL]. https://baijiahao.baidu.com/s?id=1742123909643020035,2022-08-25/2023-04-02.
[30] 阳东升, 王坤峰, 陈德旺, 等. 平行航母: 从数字航母到智能航母[J]. 指挥与控制学报, 2018, 4(2): 101-110.
[31] 李凯, 钱浩, 龚梦瑶, 等. 基于数字孪生技术的数字化舰船及其应用探索[J]. 船舶, 2018, 29(6): 101-108.
[32] 周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151-156.
[33] 许萌萌, 张成伟, 梅顺峰, 等. 基于数据大脑的船岸一体机舱智能运维系统研究设计[J]. 中国舰船研究, 2022, 17(6): 79-87.
[34] 张侨禹, 宋汉江, 李良才, 等. 基于数字孪生的舰船动力系统智能运维技术[J]. 中国舰船研究, 2022, 17(S1): 73-80.
[35] 赵海涛, 陈义平. 一种软件定义舰艇作战系统实现方法[J]. 指挥控制与仿真, 2022, 44(6): 51-56.