为了准确评估水舱结构的抗冲击性,提出一种冲击峰值和冲击有效持续时间可调的水下冲击载荷产生装置,并对2个典型壁面结构进行试验研究。试验结果表明,应力在材料屈服强度以下,试验件应变第四强度应力与冲击载荷峰值之间存在线性关系,且随着应力越接近屈服强度,拟合线性公式的均方差越大;应力超过材料屈服强度时,试验件塑性变形应力不仅与冲击载荷的峰值有关,还与冲击载荷波形和试验件结构形状有关;相比平面加筋结构,圆弧加筋结构具有更好的抗冲击性。
In order to accurately evaluate the impact resistance of water tank structures, a device for generating underwater impact loads with adjustable peak and effective duration of impact is proposed, and the experimental studies are conducted on two typical wall structures. The experimental results show that there is a linear relationship between the fourth strength stress of the specimen strain and the peak impact load when the stress is below the material yield strength, and as the stress approaches the yield strength, the mean square deviation of the fitted linear formula increases; When the stress exceeds the yield strength of the material, the plastic deformation stress of the test piece is not only related to the peak value of impact load, but also to the waveform of the impact load and the structural shape of the test piece. Compared to planar reinforced structures, circular reinforced structures have better impact resistance.
2024,46(9): 20-26 收稿日期:2023-07-04
DOI:10.3404/j.issn.1672-7649.2024.09.004
分类号:O342
基金项目:基础加强计划重点基础研究项目(2020-JCJQ-ZD-173-00-01)
作者简介:李治涛(1984 – ),男,博士,高级工程师,研究方向为水下载荷与环境
参考文献:
[1] 张浩, 赵梓斌, 李上明. 基于总场公式的水下冲击结构响应分析方法[J]. 工程力学, 2021, 38(11): 220-228.
ZHANG H, ZHAO Z B, LI S M. Analysis method of the structural response to underwater shock based on total field formulation[J]. Engineering Mechanics, 2021, 38(11): 220-228.
[2] 李汶蔚, 黄威. 金属蜂窝夹芯结构抗水下冲击性能[J]. 高压物理学报, 2020, 34(6): 035102-1-035102-9.
LI W W, HUANG W. Impulsive resistance of metallic honeycomb sandwich structures subjected to underwater impulsive loading[J]. Chinese Journal of high Pressure Physics, 2020, 34(6): 035102-1-035102-9.
[3] 杨坤, 张玮, 李营, 等. 聚脲涂覆铝板水下冲击特性数值模拟研究[J]. 舰船科学技术, 2022, 44(15): 20-25.
YANG K, ZHANG W, LI Y, et al. Numerical investigation of polyuria coated aluminum plate response subjected to underwater impact[J]. Ship Science and Technology, 2022, 44(15): 20-25.
[4] 李彦. 船体在水下冲击作用下的动态响应仿真[J]. 舰船科学技术, 2019, 41(14): 4-6.
LI Y. Simulation and research on dynamic response of ship hull under underwater impact[J]. Ship Science and Technology, 2019, 41(14): 4-6.
[5] 武海军, 成乐乐, 陈文戈, 等. 典型舰船结构的水下爆炸耦合毁伤研究进展[J]. 北京理工大学学报, 2023, 43(5): 439-459.
WU H J, CHENG L L, CHEN W G, et al. Review on coupling damage effects of underwater explosion on typical ship structures[J]. Transactions of Beijing Institute of Technology, 2023, 43(5): 439-459.
[6] 翟金柱, 李秋秋, 孔祥韶, 等. 波浪与水下爆炸气泡脉动载荷联合作用下船体梁的响应特性[J]. 中国舰船研究, 2023, 18(1): 205-212,222.
ZHAI J Z, LI Q Q, KONG X S, et al. Response characteristics of hull girder under the combined action of wave and underwater explosion bubble pulsation load[J]. Chinese Journal of Ship Research, 2023, 18(1): 205-212,222.
[7] 李亚伟, 雷宇, 李志文, 等. 爆炸冲击载荷下无线起爆浮标动力响应研究[J]. 舰船科学技术, 2023, 45(2): 52-59.
LI Y W, LEI Y, LI Z W, et al. Research on dynamic response of wireless detonating buoy under explosion shock load[J]. Ship Science and Technology, 2023, 45(2): 52-59.
[8] 白若阳, 李福荣, 荣吉利, 等. 水下爆炸载荷下多层金字塔夹芯板动态响应研究[J]. 北京理工大学学报, 2023, 43(3): 230-239.
BAI R Y, LI F R, RONG J L, et al. Research on dynamic response of multilayer Pyramid sandwich panel subjected to underwater explosion[J]. Transactions of Beijing Institute of Technology, 2023, 43(3): 230-239.
[9] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性[J]. 兵工学报, 2023, 44(3): 670-681.
CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship’s double bottom structure subjected to underwater explosion[J]. ACTA Armamentarii, 2023, 44(3): 670-681.
[10] 叶珍霞, 谌勇. 水下爆炸载荷下圆管型加筋缓冲防护性能研究[J]. 噪声与振动控制, 2023, 43(1): 239-243,274.
YE Z X, CHEN Y. Shock mitigation of circular tubular stiffeners subjected to underwater explosion loads[J]. Noise and Vibration Control, 2023, 43(1): 239-243,274.
[11] GJB150.18A-2009, 军用装备实验室环境试验方法 第18部分: 冲击试验[S]. 北京: 总装备部军标出版发行部, 2009.