太阳能铺板结构优化有利于解决局部应力、变形过大的问题,对三体复合动力无人艇的研究具有重要意义。本文建立太阳能铺板局部有限元模型,计算原结构的应力和变形量,基于多优化目标综合评估各优化方案的效果,得出最优方案。计算结果表明,所提出的优化方案在不损失布置面积的前提下,使结构最大应力降低了60.2%,最大变形降低了70.52%。该优化方案可大幅度降低太阳能铺板最大应力和变形,解决了局部强度问题,为复合动力无人艇结构设计提供了新的思路。
The structural optimization of solar deck is conducive to solving the problem of local excessive stress and deformation, and is of great significance to the research and development of USV(unmanned surface vessel ) with multiple power source. A local FE(finite element) model of solar deck was established, the stress and deformation of the original structure were calculated, and the effects of optimization schemes were comprehensively evaluated based on multiple targets, and the optimal scheme was obtained. The results show that the proposed optimization scheme reduces the maximum stress by 60.2% and the maximum deformation by 70.52% without losing the layout area. The optimization scheme can greatly reduce the maximum stress and deformation of solar deck, solve the local strength problem, and provide a new idea for the structural design of USV with multiple power source.
2024,46(9): 76-81 收稿日期:2023-04-01
DOI:10.3404/j.issn.1672-7649.2024.09.013
分类号:U674.925
基金项目:上海交通大学2022深蓝基金面上项目(SL2022MS003)
作者简介:于升杰(1990 – ),男,硕士,工程师,研究方向为绿色新能源船型
参考文献:
[1] QI Juntong, PENG Yan, WANG He, et al. Design and implement of a trimaran unmanned surface vehicle system[C]// Proceedings of the 2007 International, 2007.
[2] 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111-115.
YAN Xin-ping. Progress review of new energy application in ship[J]. Ship & Ocean Engineering, 2010, 39(6): 111-115.
[3] 王健, 罗潇, 刘旌扬, 等. 复合动力超长续航无人艇系统的设计与实现[J]. 船舶工程, 2017, 39(5): 48-52+80.
WANG Jian, LUO Xiao, LIU Jinyang, et al. Design and Implementation of Ultra-long-endurance USV with multiple power Source[J]. Ship Engineering, 2017, 39(5): 48-52+80.
[4] 吴新宪. 太阳能和风能在船舶上的应用分析[D]. 武汉: 武汉理工大学, 2010.
[5] 卢晓平, 魏光普, 张文毓. 太阳能动力船舶发展综述[J]. 海军工程大学学报, 2008, (4): 45-50+61.
LU Xiao-ping, WEI Guang-pu, ZHANG Wen-yu. Summarization of solar energy ships[J]. Journal of Naval University of Engineering. 2008, 20(4): 45-50+61.
[6] 文书礼, 兰海. 新能源船舶电力系统[M]. 北京: 科学出版社, 2019.
[7] 孙玉伟. 船用太阳能光伏发电系统设计及性能评估[D]. 武汉: 武汉理工大学, 2010.
[8] 徐敏, 张世联. 三体船连接桥结构型式研究[J]. 船舶工程, 2011, 33(2): 17-20.
XU Min, ZHANG Shi-lian. Research on cross-deck structure of a trimaran[J]. Ship Engineering, 2011, 33(2): 17-20.
[9] 操安喜, 张大鹏, 许君迪. 三体船连接桥新型结构型式研究[J]. 船舶力学, 2013, 17(1): 125-131.
CAO An-xi, ZHANG Da-peng, XU Jun-di. Research on strength of an innovative cross-deck structure for trimaran[J]. Journal of Ship Mechanics, 2013, 17(1): 125-131.
[10] JIA Dejun, LI Fanchun. Design of bulkhead reinforcement of trimaran based on topological optimization[J]. Ocean Engineering, 2019, 191: 106498-106500.
[11] JIA Dejun, LI Fanchun, ZHANG Cong, et al. Design and simulation analysis of trimaran bulkhead based on topological optimization[J]. Ocean Engineering, 2019, 191: 106304-106306.
[12] 杨赵华. 高速三体船结构轻型化设计研究[D]. 武汉: 武汉理工大学, 2008.
[13] 黄立为, 魏成柱, 陈炉云. 三体船新型分布式连接桥结构强度分析[J]. 中国舰船研究. 2020, 15(5): 124-131.
HUANG L W, WEI C Z, CHEN L Y, et al. Structural strength analysis of dispersed cross-deck of trimaran[J]. Chinese Journal of Ship Research. 2020, 15(5): 124-131.
[14] FANG Ming-chung, CHEN Tse-yin. A parametric study of wave loads on trimaran ships traveling in waves[J]. Ocean Engineering, 2008, 35(8): 749-762.