水下轮缘推进器可运行在较深海水的环境下,其可靠性不但受到加工制造的影响还受到严酷运行环境的影响。为了降低设备故障率,本文提出以FMECA和单元风险优先数(RPN)融合的可靠性分析策略。首先将水下轮缘推进器进行单元分解,详尽分析各单元风险优先数,并以此为作为加权因子,建立水下轮缘推进器可靠性模型以及进行各单元可靠性分配,对水下轮缘推进器的系统进行复合失效率分析,最终通过计算公式求得可靠性数据。此方法可综合考虑运行装备的多种因素,对水下轮缘推进器的实际可靠性运行具有指导意义,最终将该策略应用到一款自研的水下轮缘推进器研制过程,实践表明了该分析策略的有效性。
The underwater rim propeller can operate in deep seawater environment, its reliability is affected not only by manufacturing but also by harsh operating environment. In order to reduce the failure rate of equipment, a reliability analysis strategy based on FMECA and unit risk priority number (RPN) is proposed. Firstly, the unit decomposition of the underwater rim thruster was carried out, and the risk priority number of each unit was analyzed in detail, which was taken as the weighting factor to establish the reliability model of the underwater rim thruster and the reliability distribution of each unit. The compound failure rate of the underwater rim thruster system was analyzed, and finally the reliability data was obtained through the calculation formula. This method can comprehensively consider various factors of operating equipment, and has guiding significance for the actual reliable operation of underwater rim thruster. Finally, this strategy is applied to the development process of a self-developed underwater rim thruster, and the practice shows the effectiveness of this analysis strategy.
2024,46(9): 106-110 收稿日期:2023-06-10
DOI:10.3404/j.issn.1672-7649.2024.09.018
分类号:U664.34
基金项目:宁波市科技创新2025重大专项资助项目(2021Z125);宁波市自然科学基金一般项目(2022J314);宁波市重点研发计划资助项目(2022Z193)
作者简介:王冬杰(1987 – ),男,硕士,工程师,研究方向为水下动力装备
参考文献:
[1] 汪勇, 李庆. 新型集成电机推进器设计研究[J]. 中国舰船研究, 2011, 6(1): 82-85.
[2] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报, 2015, 39(3): 601-605.
[3] 杨植, 严新平, 欧阳武, 等. 船舶轮缘推进装置驱动电机及控制方法研究进展[J]. 电工技术学报, 2022, 37(12): 2949-2960.
[4] 吴洁, 张建国, 游令非, 等. 基于改进加权响应面的结构可靠度计算方法[J]. 北京航空航天大学学报, 2021, 47(8): 1638-1645.
[5] 张怀兵. 考虑失效相关的工业机器人驱动器可靠性分析[D]. 成都:电子科技大学, 2022.
[6] 张运真, 吴阳, 赵亚东, 等. 永磁动静压电主轴的结构设计及可靠性分析[J]. 机械设计与制造, 2022, (8): 242-246.
[7] 姚银歌, 张涛, 朱宇腾, 等. 基于FMEA的电主轴冷却系统可靠性分析[J]. 机电工程技术, 2021, 50(6): 101-103,137.
[8] 严婷婷, 侯卫国, 李明峻, 等. 电动车驱动电机可靠性模型的建立[J]. 可靠性与环境适应性理论研究, 2020, 38(5): 55-57.
[9] 陈诗怡. 多失效模式下的电动汽车永磁同步电机可靠性分析[D]. 成都:电子科技大学, 2022.
[10] 董锋. 开关磁阻电机系统可靠性研究[D]. 徐州:中国矿业大学, 2020.
[11] MORRIS G K, YELLAMATI D D, CYMERMAN M A. Predicting circuit board reliability for motor drivers under varying application and environmental conditions[D]. 2014 Reliability and Maintainability Symposium, 2014.
[12] HOSODA H. MAMUN M A, YOSHINO T. Trends in MW-rated V SI technology and reliability for adjustable speed drives[C]// 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition(APEC), 2010, 1261-1265.
[13] RUIZ C, POHL E A, LIAO H. Selective maintenance modeling and analysis of a complex system with dependent failure modes[J]. Quality Enginnering, 2020, 32(3) :509-520.
[14] LU H, HE Y, ZHANG Y. Reliablity-based robust design of mechanical components with correlated failure modes based on moment method[J]. Advances in Mechanical Engineering, 2014, 6: 1-17.
[15] GU Y, FAN C, LIANG L, et al. Reliability calculation method basedon the Copula function for mechanical systems with dependent failure[J]. Annals of Operations Research, 2022, 311: 99-116.
[16] PAVEL, MARC G. Conditional normoal extreme-value copulas[J]. Extemes, 2021, 24: 403-431.
[17] 黄洪剑, 林瑞光. 无刷直流电机可靠性及其故障模式分析[J]. 电机与控制学报, 2000(4): 198-201.
[18] 商艳凤. 无刷直流电机驱动系统的可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.