针对水中小目标回波信号弱、受噪声及混响强干扰影响大而难以检测的问题,提出一种基于自相关与奇异值分解(Singular Value Decomposition,SVD)的水中小目标弱信号恒虚警检测(Constant False Alarm Rate,CFAR)方法。利用CW(Continuous Wave)信号与噪声自相关的差异性,通过接收信号自相关处理降低噪声干扰。同时,利用混响相对于目标信号能量强而奇异值大的特性,通过接收信号矩阵重构与奇异值分解并对较大奇异值置零抑制混响干扰。在此基础上,采用恒虚警检测算法,可有效检测目标信号,降低虚警概率。计算机仿真和试验数据表明,该方法可有效抑制强噪声及强混响干扰,提高信号干扰比,能够实现水中小目标弱信号检测。
Aiming at the problem that the echo signal of small targets in water is weak and difficult to detect due to the strong interference of noise and reverberation, a constant false alarm rate(CFAR) method for weak signals of small objects in water based on autocorrelation and singular value decomposition (SVD) is proposed. Taking advantage of the difference between the CW signal and the noise autocorrelation, the noise interference is reduced by the receiving signal autocorrelation processing. At the same time, the strong reverberation interference, which has a higher energy and larger singular values compared to the target signal, is suppressed by reconstructing the received signal matrix and setting the larger singular values to zero using SVD. The CFAR algorithm is then employed to detect the target signal and reduce the false alarm probability. Computer simulations and experimental data show that this method can effectively suppress strong noise and reverberation interference, improve the signal-to-interference ratio, and detect weak signals from small targets in water.
2024,46(9): 131-137 收稿日期:2023-05-16
DOI:10.3404/j.issn.1672-7649.2024.09.022
分类号:U675
作者简介:刘蔓莹(1999 – ),女,硕士研究生,研究方向为水声信号处理
参考文献:
[1] 葛春莎. 水下小目标主动检测与跟踪算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[2] 朱埜. 主动声呐检测信息原理[M]. 北京: 北京海洋出版社, 2014.
[3] 马凯, 王易川, 陈喆, 等. 混响背景下基于分数阶傅里叶变换的自适应LMS滤波算法[J]. 声学技术, 2020, 39(6): 769-773.
[4] XU Wen-hua, TAN Li-hui, Lin Rongrong, et al. Weighted singular value decomposition basis of Szegő kernel and its applications to signal reconstruction and denoising[J]. Journal of Computational and Applied Mathematics, 2023(7):377-427.
[5] 钱征文, 程礼, 李应红, 等. 利用奇异值分解的信号降噪方法[J]. 振动、测试与诊断, 2011, 31(4): 459-463.
[6] 张文斌. 奇异值能量差分谱在信号降噪中的应用[J]. 工矿自动化, 2014, 40(10): 25-28.
[7] ZHANG Lijuan, SUN onglai, WANG Zhengbo, et al. Fast target detection algorithm based on CFAR and target variance characteristics[J]. Wireless Communications and Mobile Computing, 2022, 47(3): 1685-1697.
[8] 殷超然, 闫林杰, 郝程鹏, 等. 均匀混响背景下抗多目标干扰恒虚警检测器设计[J]. 水下无人系统学报, 2019, 27(4): 434-441.
YIN Chao-ran, YAN Lin-jie, HAO Cheng-peng, et al. Design of a multi-target interference resistant constant false alarm rate detector for homogeneous reverberation background[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 434-441.
[9] LI Bowen, LIU Xiaoming, DU Shasha, et al. CFAR detector based on the identification of sea clutter distribution characteristics[J]. Journal of Physics: Conference Series, 2022, 43(9): 2703-2710.
[10] LIU Kaixuan, LI Yue, WANG Peng, et al. A CFAR detection algorithm based on clutter knowledge for cognitive radar[J]. IEICE Transactions on Fundamentals of Electronics, 2023, 22(1): 590-599.
[11] YANG Zhiqing, TANG Jianjiang, ZHOU Hao, et al. Joint ship detection based on time-frequency domain and CFAR methods with HF radar[J]. Remote Sensing, 2021, 13(8): 1548.