声呐设备目标通常在波束形成后的方位能量谱中以峰值形式显示,峰值的强弱一般代表着目标强弱。为了解决传统显示软件中因方位能量谱图统一缩放而无法快速直观区分弱目标与背景的问题,提出一种可在保持背景基本稳定的情况下,对目标方位处实现局部缩放的,突出目标方位的信号处理方法。该方法利用背景均衡归一化技术,压缩能量谱的动态范围;根据估计的背景门限,对能量谱进行分段修正;对分段后数据调整相应缩放系数后再进行局部缩放。仿真和实际数据验证,本方法处理后的目标峰值会根据缩放指令相应变化而背景保持基本稳定,能实现快速直观区分目标和背景、突出显示和识别目标方位的功能。
Sonar targets are usually shown in the form of peaks in the azimuth energy spectrum after beamforming, and the strength of the peaks generally represent the strength of the targets. In order to solve the problem that the traditional display software can not distinguish weak targets from background quickly and visually because of the unified scaling of the azimuth energy spectrum, this paper presents a signal processing method that can realize local scaling of the azimuth of the targets while keeping the background basically stable. The method uses background equalization normalization technique to compress the dynamic range of energy spectrum. According to the estimated background threshold, the energy spectrum is modified in segments. Local scaling is carried out after adjusting the corresponding scaling coefficient of the segmented data. Simulation and actual data verify that the target peaks processed by this method will change according to the zoom instruction while the background remains basically stable, which can realize the functions of quickly and intuitively distinguishing the targets from the background, highlighting and identifying the orientation of the targets.
2024,46(11): 151-155 收稿日期:2023-08-11
DOI:10.3404/j.issn.1672-7649.2024.11.027
分类号:TB566
作者简介:张铮(1990-),男,硕士,工程师,研究方向为水声信号处理、声呐工程
参考文献:
[1] FOSTICK L, LIFSHITZ-BEN-BASAT A , BABKOFF H . The effect of stimulus frequency, spectrum, duration, and location on temporal order judgment thresholds: distribution analysis. [J]. Psychological Research, 2017, 83(1): 1-9.
[2] LI J, ZAKHAROV Y V. Efficient use of space-time clustering for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2017: 1–11.
[3] 袁延艺, 蒋小勇, 杜选民. 多级背景均衡在多波束LOFAR处理中的应用[J]. 声学技术, 2012, 31(3): 300-303.
[4] STRUZINSKI W A, LOWE E D. A performance comparison of four noise background normalization schemes proposed for signal detection systems[J]. Journal of the Acoustical Society of America, 1984, 76(6): 1738–1742.
[5] STRUZINSKI W A. The effect of improper normalization on the performance of an automated energy detector[J]. Acoustical Society of America Journal, 1984, 78(3): S25-S25.
[6] JOO J H, JUM B D. The performance test of the background noise normalization in the narrow band detection[C]//UDT Europe, 2006.
[7] 周武, 张宏滔. 水下无人航行器自主检测方法研究[J]. 声学技术, 2020, 39(2): 146-150
ZHOU Wu, ZHANG Hongtao. Research on autonomous detection method of underwater unmanned Vehicles[J]. Acoustic Technology, 2020, 39(2): 146-150.
[8] 芦俊, 张颜岭, 张凤园. 一种被动声呐线谱背景均衡算法[J]. 声学与电子工程, 2016(3): 20-22.
LU Jun, ZHANG Yanling, ZHANG Fengyuan. A kind of passive sonar line-spectrum background equalization algorithm[J]. Journal of acoustics and electronic engineering, 2016(3): 20-22.
[9] 邱家兴, 王易川, 丁超, 等. 一种自适应门限时间方位历程显示背景均衡算法[J]. 舰船科学技术, 2019, 41(11): 133-137.
QIU Jiaxing, WANG Yichuan, DING Chao, et al. An adaptive threshold time orientation course display background equalization algorithm[J]. Journal of Marine science and technology, 2019, 41(11): 133-137.
[10] 李启虎, 潘学宝. 数字式声呐中一种新的背景均衡算法[J]. 声学学报, 2000, 25(1): 5-9.
[11] 杨晨辉, 马远良, 杨益新. 峰值能量检测及其在被动声呐显示中的应用[J]. 应用声学, 2003, 22(5): 31-35.
[12] 王晓宇, 杨益新. 一种新的宽带声呐波束域背景均衡方法[J]. 船海工程, 2009, 38(5): 181-185.
[13] 张晓勇, 罗来源. 一种被动声呐信号检测的低虚警率方法[J]. 声学学报, 2013, 38(4): 467-471.
[14] 蒋天立, 彭华, 巩克现, 等. 多尺度形态学滤波下的宽带信号检测方法[J]. 信号处理, 2014, 30(9): 1055-1063.
[15] 李伟, 陈万里, 柴远波. 基于组合滤波设计的背景噪声归一化方法[J]. 火力与指挥控制, 2020, 45(9): 77-82.
LI Wei, CHEN Wanli, CHAI Yuan-bo, Background noise normalization method based on combinational filter design[J]. Fire Control & Command Control, 2020, 45(9): 77-82.
[16] 柴远波, 李伟, 陈万里. 一种基于级联滤波设计的背景噪声均衡方法[J]. 火力与指挥控制, 2021, 46(8): 46-51+58.
CHAI Yuanbo, LI Wei, CHEN Wanli. A background noise equilibrium method based on cascade filtering design[J]. Journal of fire and command control, 2021, 46(8): 46-51+58.