吊放声呐是航空反潜重要的搜潜设备,吊放声呐采用带速回收的模式可减少作业时间,有效提高反潜作战效能。带速回收过程吊放电缆所受最大拉力、吊放电缆的偏转角以及水下分机的偏角对吊放声呐系统设计影响较大。建立带速回收过程的动力学模型,根据风洞试验结果,对模型进行标定完善,并对吊放声呐的带速回收过程进行仿真。仿真结果表明,带速回收过程吊放电缆最大拉力基本保持稳定,吊放电缆偏转角与水下分机偏转角变化趋势一致,角度相差不大,同时风速对吊放电缆最大拉力影响很小,在一定范围内风速与吊放电缆偏转角负相关,有利于回收。
The dipping sonar adopts the mode of speed recovery to reduce the operation time and effectively improve the anti-submarine combat effectiveness. The maximum tension of the lifting cable, the deflection angle of the lifting cable and the deflection angle of the underwater extension have a great influence on the design of the lifting sonar system. In this paper, taking a certain type of dipping sonar as an example, the dynamic model of the speed recovery process is established. According to the wind tunnel test results, the model is calibrated and improved. Based on the above, the speed recovery process of the dipping sonar is simulated. The simulation results show that, the maximum tension of the lifting cable during the speed recovery process is basically stable. The deflection angle of the lifting d cable is consistent with the deflection angle of the underwater extension, and the angle is not much different. At the same time, the wind speed has little effect on the maximum tension of the suspended cable. Within a certain range, the wind speed is negatively correlated with the deflection angle of the suspended cable, which is conducive to recovery. The research content provides reference for the in-depth study of the subsequent speed recovery characteristics and the application of the future speed recovery mode.
2024,46(11): 160-164 收稿日期:2023-08-08
DOI:10.3404/j.issn.1672-7649.2024.11.029
分类号:U666.7
作者简介:安莉(1989-),女,硕士,高级工程师,研究方向为航空搜潜装备结构总体
参考文献:
[1] 王琪, 时江超, 范学满. 外军舰机反潜探测装备技术发展综述[J]. 系统仿真技术及其应用, 2022, 23: 139–142.
WANG Qi, SHI Jiangchao, FAN Xueman. Review on the development of anti submarine detection equipment technology of foreign warships and aircraf [J]. CCSSTA23rd 2022, 23: 139–142.
[2] 张本辉, 门金柱, 姚科明, 等. 舰载直升机反潜作战使用研究综述[J]. 电光与控制, 2019, 26(8): 60–66.
ZHANG Benhui, MEN Jinzhu, YAO Keming, et al. Review of research on shipboard helicopter in antisubmarine operational application[J]. Electronics Optics & Control. 2019, 26(8) : 60–66.
[3] 王祖典. 航空反潜战与反潜武器[J]. 航空兵器, 2007(1): 6-9.
WANG Zudian. Airborne anti–submarine warfare and their weapons[J]. Aeroweaponry, 2007(1): 6-9.
[4] 孙明太. 航空反潜装备[M]. 北京: 国防工业出版社, 2012.
[5] 胡伟涛, 赵青松, 罗弋洋, 等. 基于体系结构框架的反潜作战装备体系[J]. 兵工自动化, 2021(40): 49–53
HU Weitao, ZHAO Qingsong, LUO Yiyang, et al . Architecture of anti–submarine warfare weapon equipment based on architecture framework[J]. Ordnance Industry Automation. 2021(40): 49–53.
[6] 窦强, 阴启玉, 梁立. 基于吊放声呐的无人艇搜潜任务规划算法[J]. 指挥控制与仿真, 2023, 45(2): 9–16.
DOU Qiang, YIN Qiyu, LIANG Li. Planning algorithm of USV antisubmarine mission based on the dipping sonar [J]. Command Control & Simulation. 45(2): 9–16.
[7] 张丙飞, 孙心毅, 成建波. 单机吊放声呐应召反潜探测概率的计算与优化[J]. 航空电子技术, 2020, 51(1): 35–38.
ZHANG Bingfei, SUN Xinyi, CHENG Jianbo. Probability in antisubmarine call search with sonar compute and optimize[J]. Avionics Technology, 2020 51(1): 35–38.
[8] 休斯顿, 刘又午. 多体系统动力学[M]. 天津: 天津大学出版社, 1987.
[9] 顾文彬, 陆鸣, 刘建青, 等. 基于Kane方法的火箭抛绳系统飞行动力学模型[J]. 弹道学报, 2015, 27(2): 20-23.
GU Wenbin, LU Ming, LIU Jianqing, et al. Dynamic model of line throwing rocket system with flight motion based on kane's method[J]. Journal of Ballistics, 2015, 27(2): 20-23.
[10] HUSTON R L , KAMMAN J W . Validation of finite segment cable models[J]. Computers & Structures, 1982, 15(6): 653–660.