针对碳纤维复合材料重量轻、强度大、吸振能力强的特性,以某舰船推进轴系为研究对象,对碳纤维复合材料在推进轴系中的应用进行研究。基于Ansys Workbench的ACP模块对碳纤维复合材料进行铺层建立了碳纤维轴段计算分析模型。通过对不同铺层方案、不同搭接长度、不同连接方法进行分析,研究不同情况下的碳纤维轴段抗扭转与抗拉压能力,寻找碳纤维轴系的设计方案,最后将设计出的碳纤维轴系与纯钢轴进行对比研究,形成碳纤维轴系设计分析流程。研究表明,当碳纤维轴段选用混合连接且搭接长度为160 mm,铺层方式为[ (15°/45°/60°/90°/–60°/–45°/–15°)14]时,能显著提高此推进轴系的抗扭转和抗拉压能力,碳纤维轴系较于普通纯钢轴轴系自重轻,有较好减振能力。所得结果可为后续同类型推进系统的设计与计算校核提供参考。
In view of the characteristics of light weight, high strength and strong vibration absorption of carbon fiber composites, the design of carbon fiber composites in the propulsion shafting of a warship was studied. Based on ACP module of Ansys Workbench, the calculation and analysis model of ship carbon fiber composite shaft section was established. Through the analysis of different lamination schemes, different lap lengths and different connection methods, the torsion and tension and compression resistance of carbon fiber composite shaft sections under different conditions are studied, and the design scheme of ship carbon fiber composite is found. Finally, the designed carbon fiber shafting is compared with the pure steel shaft, and the design and analysis flow of carbon fiber shafting is formed. The research shows that the torsion and tension and compression resistance of the marine propulsion shafting can be significantly improved when the carbon fiber composite shaft segments are mixed, the overlapping length is 160 mm, and the laying mode is [(15°/45°/60°/90°/–60°/–45°/–15°)14]. Compared with the common shafting, the carbon fiber composite shafting can be improved. The results can provide reference for the design and calculation of the propulsion system of the same type of ships in the future.
2024,46(14): 114-120 收稿日期:2023-09-15
DOI:10.3404/j.issn.1672-7649.2024.14.019
分类号:U664.2
基金项目:国家自然科学基金重点项目(51839005);国家科技重大专项资助项目(2017-IV-0006-0043)
作者简介:王姝丹(1998-),女,硕士研究生,研究方向为船舶动力装置性能分析及振动噪声控制
参考文献:
[1] 赖国军, 刘金林, 雷俊松, 等. 推进轴系方案设计的关键技术研究进展[J]. 中国舰船研究, 2019, 14(5): 10-21.
LAI Guojun, LIU Jinlin, LEI Junsong, et al. Progress in studies on key technologies for marine propulsion shafting scheme design[J]. Chinese Journal of Ship Research, 2019, 14(5): 10-21.
[2] 张文毓. 船舶复合材料的研究与应用进展[J]. 船舶物资与市场, 2017(6): 41-46.
[3] 杨敏娟. 碳纤维复合材料的发展和应用[C]//中国武汉决策信息研究开发中心, 决策与信息杂志社, 北京大学经济管理学院. 决策论坛——如何制定科学决策学术研讨会论文集(下), 2015.
[4] 徐昌华. 碳纤维及其复合材料的发展和应用概况[C]//中国电子学会生产技术委员会工程塑料应用第四届委员会. 工程塑料优选论文集. 中国电子学会生产技术委员会, 1993.
[5] 刘怡. 关于艉轴减震系统的设计[J]. 节能, 2020, 39(6): 52-54.
[6] BADIE M A, MAHDI E, HAMOUDA A M S. An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft[J]. Materials & Design, 2011, 32(3): 1485-1500.
[7] TALIB A R A, ALI A, BADIE M A, et al. Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft[J]. Materials & Design, 2010, 31(1): 514-521.
[8] 肖畅, 陈永霖, 李帅, 等. 平流层飞艇碳纤维复合材料刚性骨架的管件连接方法研究[J]. 复合材料科学与工程, 2020(6): 89-94.
[9] 于梓贤, 沈志远, 刘敬喜. 复合材料修复含裂纹圆管的轴压承载特性研究[J]. 舰船科学技术, 2022, 44(20): 22-28.
YU Zixian, SHEN Zhiyuan, LIU Jingxi. Studies on axial compression bearing behavior of cracked pipes repaired by composite material[J]. Ship Science and Technology, 2022, 44(20): 22-28.
[10] 陈谦, 贾泽坤, 张冠军. 船舶复合材料轴系振动响应特性分析[J/OL]. 武汉理工大学学报(交通科学与工程版), 2023, 1-13.
[11] 尹志垚, 谢旻, 景伟, 等. 船用复合材料轴系的设计研究[J]. 纤维复合材料, 2022, 39(4): 93-101.