在数值模拟中,碎冰模型形状对于船舶碎冰阻力预报结果的准确性具有显著影响。本文以某极地环保多用途运输船为案例对象,研究7种数值碎冰模型形状对船舶碎冰阻力预报的影响,建立片状正方形、圆形、正五边形、正六边形、椭圆形、梯形和不规则多边形数碎冰模型,采用CFD-DEM的方法对船舶碎冰阻力进行预报,并将结果与冰水池模型试验相对比。研究表明,7种形状碎冰模型均能很好模拟出模型试验现象,数值计算得到的碎冰阻力值均比模型试验结果高,片状圆形碎冰模型数值计算值高2.04%,在7种形状中误差最小。因此,在以阻力预报为目的船舶碎冰航道航行CFD-DEM数值计算中,建议采用片体形状为圆形的数值碎冰模型。
The accuracy of ship resistance prediction in the brash ice channel is significantly influenced by the shape of brash ice models in numerical simulation. This study focuses on a polar environmentally friendly multipurpose transport vessel and investigates the impact of seven different shapes of brash ice models on the prediction of ship resistance in the brash ice channel. Seven different shapes of flaky brash ice models were established, including circle, oval, square, regular pentagon, regular hexagon, trapezoid, and irregular polygon. The CFD-DEM coupling numerical method was applied to predict the ship resistance in the brash ice channel, and the results were compared with HSVA ice tank tests. The results show that seven different shapes of flaky brash ice models all can effectively simulate HSVA tests' phenomena. By comparison of the numerical calculation results in seven different ice shape condition with HSVA test results, it is shown that the numerical calculation results are all larger than test results and flaky circular brash ice model has the minimum error of 2.04%. Therefore, flaky circular shape is more recommended in CFD-DEM calculation from the perspective of resistance prediction.
2024,46(16): 64-71 收稿日期:2023-11-09
DOI:10.3404/j.issn.1672-7649.2024.16.011
分类号:U661.31+1
基金项目:国家自然科学基金资助项目(52301330)
作者简介:张雨晴(1999 – ),女,硕士研究生,研究方向为船舶碎冰阻力
参考文献:
[1] KARAMPERIDIS S, VALANTASIS-KANELLOS N. Northern Sea route as an emerging option for global transport networks: a policy perspective [J]. WMU Journal of Maritime Affairs, 2022.
[2] Finnish Maritime Administration. Finnish and Swedish Ice Class Rules[S]. 2017.
[3] CORLETT E C B, SNAITH G R. Some aspects of icebreaker design[J]. Trans. RINA, 1964, 106(4): 389-413.
[4] 黄焱, 李伟, 王迎晖, 等. 大型运输船极地浮冰区航行阻力的模型试验[J]. 中国造船, 2016, 57(3): 26-35.
[5] 郭春雨, 李夏炎, 王帅, 等. 冰区航行船舶碎冰阻力预报数值模拟方法[J]. 哈尔滨工程大学学报, 2016, 37(2): 145-156.
[6] HANSEN E H, LOSET S. Modelling floating offshore units moored in broken ice: model description[J]. Cold Regions Science and Technology, 1999, 29(2): 97-106.
[7] VROEGRIJK E. Validation of CFD+ DEM against measured data[C]// American Society of Mechanical Engineers. ASME 2015 34th International Conference on Offshore Mechanics and Arctic Engineering. Canada, Newfoundland: ASME, 2015: 1-7.
[8] 国威, 赵桥生, 王习建, 等. 碎冰条件下冰区船冰水动力数值模拟研究[J]. 船舶力学, 2020, 24(4): 456-464.
GUO Wei, ZHAO Qiaosheng, WANG Xijian, et al. The numerical simulation research on ice and water combined force acting on ice-going ship in pack ice[J]. Journal of Ship Mechanics, 2020, 24(4): 456-464.
[9] 骆婉珍, 姜大鹏, 吴铁成, 等. 冰区加强型散货船碎冰航道航行阻力数值计算研究[J]. 中国造船, 2020, 61(1): 41-49.
[10] 张远双, 齐江辉, 郑亚雄, 等. 冰区加强型集装箱船碎冰航道航行阻力数值模拟[J]. 舰船科学技术, 2020, 42(21): 49-54.
ZHANG Yuanshuang, QI Jianghui, ZHEN Yaxiong, et al. A numerical simulation research for resistance of ice-strengthening container ship in crushed ice channel[J]. Ship Science and Technology, 2020, 42(21): 49-54.
[11] 齐江辉, 郭翔, 陈强, 等. 碎冰区航行船舶阻力预报数值模拟研究[J]. 兵器装备工程学报, 2019, 40(11): 207-212.
[12] ZHANG J, ZHANG Y, SHANG Y, et al. CFD-DEM based full-scale ship-ice interaction research under FSICR ice condition in restricted brash ice channel[J]. Cold Regions Science and Technology, 2022, 194.
[13] 王超, 封振, 李兴, 等. 航行于碎冰区船舶冰阻力与冰响应探析[J]. 中国舰船研究, 2018, 13(1): 73-78.
WANG Chao, FENG Zhen, LI Xing, et al. Analysis on ice resistance and ice response of ships sailing in brash ice[J]. Chinese Journal of Ship Research, 2018, 13(1): 73-78.
[14] KARULIN EB K M. Numerical and physical simulations of moored tanker behaviour[J]. Ship and Offshore Structures, 2011, 6(3): 179-184.
[15] 李紫麟, 刘煜, 孙珊珊, 等. 船舶在碎冰区航行的离散元模型及冰载荷分析[J]. 力学学报, 2013, 45(6): 868-877.
[16] 郭麒. 基于扩展圆盘离散元方法的海冰问题模拟与分析[D]. 大连: 大连理工大学, 2022.
[17] 金强, 张佳宁, 葛媛, 等. 基于离散元方法的极地浮碎冰区船舶冰阻力[J]. 船舶工程, 2020, 42(1): 35-41.
JING Qiang, ZHANG Jianing, GE Yuan, et al. Ship ice resistance in polar brash/broken ice area based on discrete element method[J]. Ship Engineering, 2020, 42(1): 35-41.
[18] 何宾峰, 詹成胜, 赵桥生, 等. 浮冰区船舶冰阻力数值计算研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(1): 71-75.
[19] WANG C, HU X, TIAN T, et al. Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 414-427.
[20] TANG X, ZOU M, ZOU Z, et al. A parametric study on the ice resistance of a ship sailing in pack ice based on CFD-DEM method[J]. Ocean Engineering, 2022, 265.
[21] STEPHEN B. Pope turbulent flows[M]. United Kingdom: Cambridge University Press, 2010.
[22] 孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京: 科学出版社, 2009.
[23] Brash ice tests for 68k MPV with ice class 1A: HSVA Report[R]. 2022.
[24] Calm water model tests for a 68000DWT pulp carrier: SDARI Report[R]. 2022.
[25] TIMCO G W. Ice forces on structures: physical modelling techniques[C]//Second IAHR State-of-the-Art Report on Ice Forces on Structures, Proceedings of the IAHR Symposium on Ice. Germany, Hamburg, 1984 (2): 34.
[26] TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2): 107-129.
[27] Uncertainty analysis in CFD, Examples for resistance and flow, ITTC Recommended Procedures, 1999.
[28] 陈昭炀. 船舶在人造浮冰中的阻力试验研究[D]. 大连: 大连理工大学, 2020.