针对传统故障诊断方法检测某型潜舰导弹武器系统故障准确率不高、耗时长的问题,提出基于概率神经网络的智能诊断方法。介绍该网络的典型结构及优势所在,以某型潜舰导弹武器系统为验证对象,选取合适特征向量、归纳合理故障类型、建立相应神经网络,并运用Matlab仿真验证。结果表明在现有数据库中,概率神经网络对该系统的故障诊断正确率为77.8%。这表明基于概率神经网络的故障诊断基本能够区分该系统故障类型,大大减少了部队故障诊断时间和人力投入。
Aiming at the problems of low accuracy and long time for traditional fault diagnosis methods to detect the fault of a submarine missile weapon system,an intelligent diagnosis method based on probabilistic neural network was proposed.This paper introduces the typical structure and advantages of the network,takes a certain submarine missile weapon system as the verification object,selects the appropriate feature vector,summarizes the reasonable fault types,establishes the corresponding neural network,and uses Matlab simulation to verify.The results show that:in the existing database,the probabilistic neural network fault diagnosis accuracy of the system is 77.8%.This shows that the fault diagnosis based on probabilistic neural network can effectively distinguish the fault types of the system,and greatly reduce time and manpower input of the army fault diagnosis.
2024,46(16): 182-185 收稿日期:2023-10-20
DOI:10.3404/j.issn.1672-7649.2024.16.032
分类号:TJ09
作者简介:冯林平(1975 – ),男,硕士,副教授,研究方向为战术导弹
参考文献:
[1] 沈树楠, 刘慎洋. 智能检测技术在四站装备维修备件联合保障中的应用[J]. 价值工程, 2021, 19: 145-146.
SHEN Shunan, LIU Shenyang. Application of intelligent detection technology in civil military integration support of four station equipment maintenance spare parts[J]. Value Engineering, 2021, 19: 145-146.
[2] 罗雄彪, 陈铁群, 万英. 方向基概率神经网络的模式识别[J], 机械工程学报, 2005, 41(12): 28-233.
LUO Xiongbiao, CHEN Tiequn, WAN Ying. Pattern Recognition by Fusion of Directional Basis Function and Probabilistic Neural Network[J]. Journal of Mechanical Engineering, 2005, 41(12): 28-233.
[3] 王立文, 刘强, 霍金鉴, 等. 基于概率神经网络的液压管路泄漏故障程度识别[J], 机床与液压, 2020, 48(4): 159-164.
WANG Liwen, LIU Qiang, HUO Jinjian, et al. Identification of leakage degree of hydraulic pipeline based on probabilistic neural network[J], Machine Tool and Hydraulics, 2020, 48(4): 159-164.
[4] HOU Qiang, ZHU Jianwei, LIN Bo. Estimation of reservoir porosity using probabilistic neural network and seismic attributes[J]. Global Geology, 2016(19): 6-12.
[5] ASHOK K P, SNEHAMOY C. Computer vision-based limestone rock-type classification using probabilistic neural network[J]. Geoscience Frontiers, 2016(7): 53-60.
[6] 唐颜, 徐天蒙, 周伟, 等. 基于PNN某型弹载计算机故障诊断[J], 弹箭与制导学报, 2021, 41(3): 84-87.
TANG Yan, XU Tianmeng, ZHOU Wei, et al. Fault diagnosis of missile-borne computer based on PNN[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(3): 84-87.
[7] 王莉君, 程亮亮, 俞凤娟, 等. 基于降维映射分析及贝叶斯分类器的故障诊断方法及其在仪表中的应用[J], 传感技术学报, 2020, 33(7): 1074-1078.
WANG Lijun, CHENG Liangliang, YU Fengjuan, et al. Introduction of a failure diagnosis method for instruments based on dimensionality reduction mapping and bayesian classifier[J]. Chinese Journal of Sensors and Actuators, 2020, 33(7): 1074-1078.
[8] 谢乐, 衡熙丹, 刘洋, 等. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报, 2020, 54(11): 2266-2272.
XIE Le, HENG Xidan, LIU Yang, et al. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(11): 2266-2272.
[9] 李珩, 魏宏昌. 船舶无线网络通信过程差错数据智能检测方法[J] . 舰船科学技术, 2019, 41(12A): 106-108.
LI Heng, WEI Hongchang. Research on intelligent detection method of error data in marine wireless network communication[J]. Ship Science and Technology, 2019, 41(12A): 106-108.
[10] 郭涛, 于海涛, 肖鲁, 等. 概率神经网络在武器装备故障诊断中的应用[J]. 兵工自动化, 2015, 34(6): 10-13.
GUO Tao, YU Haitao, XIAO Lu, et al. Application of probabilistic neural network in fault diagnosis of weapon equipment[J]. Ordnance Industry Automation, 2015, 34(6): 10-13.