对某轮式高速两栖车辆水上航行工况全航速范围的阻力成分占比开展分析,为其水动力构型的优化设计提供方向性指导。采用CFD软件FINETM/Marine开展带自由面的模型阻力数值计算,通过与模型试验结果对比验证了数值计算方法。通过叠模数值计算确定了对应各航速的水粘压阻力,其中针对高速时的“干方尾”现象,提出以动态吃水平面切割尾波谷自由面形成尾部导流体的叠模计算几何模型构建方法。结合带自由面阻力计算得到的空气阻力和其他水阻力成分,分析了不同阻力成分的占比及其随航速变化的规律。结果表明,该轮式两栖车全速度范围内的水阻力在总阻力中的占比都高于90%;排水航行阶段,水粘压阻力占比最高,约为45%~70%;过渡航行阶段,兴波和飞溅阻力占比最高,约为45%~70%;滑行阶段,水摩擦阻力占比随航速增大迅速提高,设计航速时在总阻力中占比约为36%。
Resistance component proportion of a high-speed wheeled amphibious vehicle on water are analyzed in its whole speed range, to provide some well-founded guidance for the design optimization of vehicle style. Numerical simulation of the viscous flow field with free surface around the vehicle model is carried out by CFD software FINETM/Marine, and the obtained resistance and posture are verified to be in consistent with model test results, proving good accuracy of the adopted CFD method. For the dry transom phenomenon at high speed condition, a double model configuration approach of adding an extender body by cutting the stern trough with dynamic draught plane is presented. Then, the viscous pressure resistance is computed using double model method. With the addition of other resistance components attained in the simulation with free surface, the proportion of each resistance component is determined, and their variation rules with different speeds are studied. The results show that, the water resistance component is more than 90% of the total resistance for all the simulated speed conditions. For the hull borne stage, water viscous pressure resistance is the dominant component, with a proportion varying from 45% to 70%. For the transition sailing stage, wave-making resistance and spraying resistance make up 45% to 70% of the total resistance. For the planning stage, the proportion of water frictional resistance component increases rapidly as speed goes up, achieving as high as 36% at the design speed.
2024,46(17): 1-7 收稿日期:2023-11-3
DOI:10.3404/j.issn.1672-7649.2024.17.001
分类号:U674.78
作者简介:熊小青(1982-),男,研究员,研究方向为船舶与两栖车辆水动力性能
参考文献:
[1] 康忠, 冯付勇, 杨志勇, 等. 高速两栖轮式车静水航行阻力特性分析[J]. 车辆与动力技术, 2020(3): 11-14.
[2] 郑翔玉, 房凌辉, 王琛, 等. 两栖车辆水上快速性设计研究[J]. 四川兵工学报, 2015, 36(11): 34-37.
[3] 贾小平, 马骏, 于魁龙, 等. 超高速水陆两栖车技术研究[J]. 机械研究与应用, 2015, 28(5): 46-49.
[4] 钟怡军. 轮式装甲车总体参数匹配与设计 [D]. 西安: 长安大学, 2014.
[5] 王少新, 金国庆, 王涵, 等. 双车厢XX车静水直航下的水动力性能研究[J]. 兵工学报, 2020, 41(3): 434-441.
[6] 蔡宇峰, 王丽丽, 汪宇, 等. 基于计算流体动力学的两栖车辆水动力性能模拟及试验验证[J]. 系统仿真技术, 2018, 14(3): 183-187.
[7] 王少新, 王涵, 金国庆, 等. 水陆XX车水动力性能与防浪板受力特性研究[J]. 兵器装备工程学报, 2020, 41(1): 1-6.
[8] 王丽丽, 张家旭, 刘涛, 等. 压浪板对两栖车辆水动力特性影响的数值分析[J]. 系统仿真技术, 2018, 14(2): 113-117.
[9] 孙旭光, 李勇, 韦韬, 等. 基于改进叠摸方法的两栖车辆航行阻力成分研究[J]. 车辆与动力技术, 2019(1): 54-57.
[10] 周利兰, 张乐乐. 两栖车航行阻力特性的数值研究[J]. 华南理工大学学报(自然科学版), 2021, 49(12): 133-142.