本文针对固定式平台吊机基座结构,计算吊机基座在起升载荷及风载荷作用下,以及不同的吊机吊臂水平旋转角度下的疲劳强度。总结一种基于风向概率分布,吊机基座疲劳分析的方法。在吊机起升载荷工况下采用S-N曲线法进行疲劳分析;在风载荷工况下根据风向概率分布图,采用S-N曲线法进行疲劳分析。然后对相同位置处的疲劳损伤值进行叠加,并与直接组合吊机起升载荷及风载荷下的疲劳损伤值结果进行对比。该分析方法可为其他在风载荷及循环载荷下的固定式平台局部结构疲劳强度分析提供参考。
The fatigue strength of fixed offshore platform crane pedestal with different crane boom horizontal rotating angles are calculated under working loads and wind loads. Based on wind direction probability, the fatigue strength analysis method of crane pedestal is concluded. The fatigue analysis is calculated based on S-N curve method in working loads condition. The fatigue analysis was calculated based on wind direction probability distribution map in wind loads condition. The fatigue damages are accumulated in the same position, and compared with the result of direct combination of the working loads and wind loads. This analysis method provides a reference for other local structure on fixed offshore platform under wind loads and cyclic loads.
2024,46(17): 141-145 收稿日期:2023-11-15
DOI:10.3404/j.issn.1672-7649.2024.17.024
分类号:U671.99
作者简介:陈帮(1993-),男,硕士,工程师,研究方向为海工结构设计
参考文献:
[1] 徐小鹏, 王定亚, 王书峰,等. 海洋平台吊机关键技术及发展趋势研究[J]. 石油机械, 2013, 41(6): 54-58.
XU Xiaopeng, WANG Dingya, WANG Shufeng et al. Research on key technology for offshore platform crane and its development trend[J]. China Petroleum Machinery, 2013, 41(6): 54-58.
[2] 张皓, 赵瑾, 郝承明,等. 船用核安全级基座强度研究[J]. 船舶工程, 2023, 45(6): 68-72+155.
ZHANG Hao, ZHAO Jin, HAO Chengming, et al. Study on strengths of marine nuclear safety base[J]. Ship Engineering, 2023, 45(6): 68-72+155.
[3] 赵宏平. 多吨机拖船拖缆机基座区域结构局部强度优化分析[J]. 舰船科学技术, 2021, 43(2): 16-18.
ZHAO Hongping. Study on local strength optimization analysis of towing machine base area of multi ton tug[J]. Ship Science and Technology, 2021, 43(2): 16-18.
[4] 高森. 基于声学设计与噪声预报的舰船基座结构设计与优化[J]. 舰船科学技术, 2018, 40(14): 13-15.
GAO Sen. The design and optimization of ship-base using acoustic design and noise prediction[J]. Ship Science and Technology, 2018, 40(14): 13-15.
[5] 张星, 王利山, 徐绿洲,等. 油船货油软管吊基座加强结构设计[J]. 船海工程, 2021, 50(02): 50-53.
ZHANG Xing, WANG Lishan, XU Lvzhou, et al. Structural reinforcement design of cargo hose crane for oil tanker[J]. Ship & Ocean Engineering, 2021, 50(02): 50-53.
[6] 林娟颖, 刘晓颖, 蔡伯阳,等. 动梁式龙门铣床传动部件基座结构改进设计[J]. 机械设计与研究, 2017, 33(5): 197-199.
LIN Juanying, LIU Xiaoying, CAI Boyang, et al. Structural optimization design of gantry milling machine transmission part base[J]. Machine Design and Research, 2017, 33(5): 197-199.
[7] 陈思博. 4000t起重船吊机基座结构强度分析与结构优化[D]. 镇江: 江苏科技大学, 2023.
[8] ZHU X, TANG Y S, LI F X, et al. structural strength analysis of main crane pedestal of the jack-up wind turbine installation vessel[J]. Applied Mechanics and Materials, 2013, 351: 7-12.
[9] KRUKOWSKI J, MACZYŃSKI A, Szczotka M. The influence of a shock absorber on dynamics of an offshore pedestal crane[J]. Journal of Theoretical and Applied Mechanics, 2012, 50(4): 953-966.
[10] KRUKOWSKI J, MACZYŃSKI A. Application of the rigid finite element method for modelling an offshore pedestal crane[J]. Archive of Mechanical Engineering, 2013: 451-471.
[11] 贾兴军. 海洋平台吊机受力及寿命分析研究[D]. 成都: 西南石油大学, 2015.
[12] 崔进, 张谭龙, 张国栋,等. 海洋平台吊机基座疲劳问题分析研究[J]. 中国海洋平台, 2017, 32(5): 62-67+74.
CUI Jin, ZHANG Tanlong, ZHANG Guodong, et al. Fatigue analysis method for offshore crane pedestal[J]. China Offshore Platform, 2017, 32(5): 62-67+74.
[13] 中国船级社. 船舶与海上设施起重设备规范[S].2008.
[14] DNVGL-RP-C203. Fatigue design of offshore steel structures[S].
[15] 中国船级社. 油船结构直接计算分析指南[M].北京:人民交通出版社,2003.