船舶辐射噪声中的线谱分量具有较高的强度和稳定度,通过测定并跟踪线谱,可以精确地估计目标的运动参数。为此,研究基于经验模态分解的船舶辐射噪声特征提取方法。首先,构建船舶辐射噪声数学模型,用于获取船舶辐射噪声信号;然后,运用经验模态分解方法提取船舶辐射噪声的7个经验模态分量和1个余项,并计算船舶辐射噪声经验模态分量的样本熵;最后,选择样本熵最大的船舶辐射噪声检验模态分量作为船舶辐射噪声的特征。实验结果表明,该方法可以准确获得船舶运行设备的辐射噪声,且具备较强的舰船辐射噪声分帧能力。该方法还可以有效地将舰船辐射噪声分解成不同经验模态分量,大大降低了船舶辐射噪声余项接近零。
The line spectrum component in ship radiated noise has high intensity and stability. By measuring and tracking the line spectrum, the motion parameters of the target can be accurately estimated. To this end, a ship radiation noise feature extraction method based on empirical mode decomposition is studied. Firstly, construct a mathematical model for ship radiated noise to obtain ship radiated noise signals. Then, the empirical mode decomposition method is used to extract 7 empirical mode components and 1 residual term of ship radiation noise, and the sample entropy of the empirical mode components of ship radiation noise is calculated using ice. Finally, select the modal component of ship radiation noise with the highest sample entropy as the feature of ship radiation noise. The experimental results show that this method can accurately obtain the radiated noise of ship operating equipment and has strong ability to frame ship radiated noise. This method can also effectively decompose ship radiation noise into different empirical mode components, greatly reducing the residual of ship radiation noise to close to zero.
2024,46(18): 150-153 收稿日期:2024-2-8
DOI:10.3404/j.issn.1672-7649.2024.18.026
分类号:TP63
基金项目:2022年山东省教育厅科学技术研究项目(一般)(GJJ220312)
作者简介:崔建忠(1972-),男,硕士,讲师,研究方向为计算机理论、计算机视觉
参考文献:
[1] 倪俊帅, 赵梅, 胡长青. 基于DNN和改进K-means的船舶辐射噪声开集识别方法[J]. 声学技术, 2022, 41(3): 382-387.
[2] 郭政, 赵梅, 胡长青, 等. 船舶辐射噪声广义多尺度数学形态学特征提取与应用研究[J]. 振动与冲击, 2022, 41(4): 21-28+100.
[3] 吴承希, 王彪, 徐千驰, 等. 基于小波包分解和PCA-Attention-LSTM的船舶辐射噪声识别技术[J]. 声学技术, 2022, 41(2): 264-273.
[4] 徐源超, 蔡志明, 孔晓鹏. 基于双对数谱和卷积网络的船舶辐射噪声分类[J]. 电子与信息学报, 2022, 44(06): 1947-1955.
[5] 徐桂光, 王旭东, 汪飞, 等. 基于SE-ResNeXt网络的低信噪比LPI雷达辐射源信号识别[J]. 系统工程与电子技术, 2022, 44(12): 3676-3684.
[6] 李紫鹏, 纪永强, 郭兵勇, 等. 基于特征模式分解的水声目标特征提取方法[J]. 哈尔滨工程大学学报, 2023, 44(9): 1542-1548.
[7] 李威, 杨德庆, 刘西安, 等. 船舶水下辐射噪声抑制的声振相关性方法[J]. 振动与冲击, 2023, 42(15): 1-7+22.
[8] 沈鑫玉, 陈涛, 郭良浩, 等. 遗传算法优化变分模态分解提取船舶辐射噪声特征线谱方法[J]. 应用声学, 2024, 43(1): 1-11.