救援船舶在执行海上任务时,其自控式同步电动机驱动系统面临电动机不确定性与海洋环境复杂性两大挑战,导致其驱动控制的稳定性与精确性不足。为解决这一问题,本次开展救援船舶自控式同步电动机驱动模糊控制方法研究。首先,对救援船舶电力推进系统结构与运行进行分析。然后,以此为基础,基于模糊理论,完成救援船舶自控式同步电动机驱动模糊控制架构设计,其主要分为三部分,即以电动机转子位置信号与给定位置信号差值为位置环P控制算法的输入,输出速度信号;以速度信号与给定速度信号差值为速度环模糊PID算法的输入,输出电流信号;以电流信号与给定电流信号差值为电流环改进型模糊自整定PI算法的输入,输出控制信号给逆变器,进而驱动自控式同步电动机。最后搭建救援船舶电力推进仿真模型,应用实验验证所提方法的先进性,实验结果表明,应用所提方法,可有效得到电动机速度信号与电流信号,完成救援船舶自控式同步电动机驱动模糊控制,应用效果较好。
When rescue ships perform maritime missions, their self controlled synchronous motor drive systems face two major challenges: motor uncertainty and complexity of the marine environment, resulting in insufficient stability and accuracy of their drive control. To address this issue, a research on fuzzy control method for autonomous synchronous motor drive of rescue ships was conducted. This method first analyzes the structure and operation of the electric propulsion system of rescue ships. Then, based on fuzzy theory, the fuzzy control architecture design for the self controlled synchronous motor drive of rescue ships is completed. It mainly consists of three parts, namely, using the difference between the motor rotor position signal and the given position signal as the input of the position loop P control algorithm, and outputting the speed signal; Using the difference between the speed signal and the given speed signal as the input of the speed loop fuzzy PID algorithm, output the current signal; The improved fuzzy self-tuning PI algorithm takes the difference between the current signal and the given current signal as the input of the current loop, outputs the control signal to the inverter, and drives the self controlled synchronous motor. Finally, a bear simulation model of rescue ship electric propulsion in through built to verify the progressiveness of the proposed method through experiments. The experimental results show that the proposed method can effectively obtain the motor speed signal and current signal, and complete the fuzzy control of the rescue ship automatic control synchronous motor drive. The application effect is good.
2024,46(20): 124-128 收稿日期:2024-7-2
DOI:10.3404/j.issn.1672-7649.2024.20.022
分类号:TP273
基金项目:江西省重点研发计划项目(20212BBE53028)
作者简介:范洪斌(1968-),男,硕士,副教授,研究方向为机电一体化技术
参考文献:
[1] 韩哲鹏, 张笛. 基于动态贝叶斯网络的船舶电力推进系统可靠性评估[J]. 船舶工程, 2021, 43(11): 118-124.
HAN Zhepeng, ZHANG Di. Reliability evaluation of ship electric propulsion system based on dynamic bayesian network[J]. Ship Engineering, 2021, 43(11): 118-124.
[2] 阎涛. 永磁同步电机双闭环调速PI控制器及其改进设计[J]. 船舶工程, 2023, 45(3): 106-111.
YAN Tao. Dual closed-loop speed control PI controller for permanent magnet synchronous motor and its improving design[J]. Ship Engineering, 2023, 45(3): 106-111.
[3] 王晓琳, 郭慧, 顾聪. 一种基于电流源逆变驱动的超高速永磁同步电机改进型控制策略[J]. 中国电机工程学报, 2022, 42(7): 2733-2743.
WANG Xiaolin, GUO Hui, GU Cong. An improved control strategy for the ultra-high-speed permanent magnet synchronous motor based on the current source inverter[J]. Proceedings of the CSEE, 2022, 42(7): 2733-2743.
[4] Ipoum-Ngome, P. G., Mon-Nzongo, D. L., Rodolfo César Costa Flesch, et al. Multiobjective model-free predictive control for motor drives and grid-connected applications: operating with unbalanced multilevel cascaded h-bridge inverters[J]. IEEE Transactions on Power Electronics, 2023, 38(3 Pt. 1), 3014-3028.
[5] 李昱, 郭宏, 平朝春, 等. 基于电流源变流器的永磁同步电机驱动系统全状态变量预测转矩控制[J]. 电工技术学报, 2021, 36(1): 15-26.
[6] 李耀华, 赵承辉, 周逸凡, 等. 基于数据驱动的永磁同步电机深度神经网络控制[J]. 电机与控制学报, 2022, 26(1): 115-125.
LI Yaohua, ZHAO Chenghui, ZHOU Yifan, et al. Deep neural network control for PMSM based on data drive[J]. Electric Machines and Control, 2022, 26(1): 115-125.
[7] 蒋寒, 盛晨兴, 欧阳武. 无轴轮缘推进器电机与水力部件耦合优化设计研究[J]. 船舶力学, 2021, 25(11): 1470-1478.
[8] 彭慧, 娄颜超. 永磁同步电动机自适应超螺旋控制仿真[J]. 计算机仿真, 2021, 38(12): 212-216.
PENG Hui, LOU Yanchao. Simulation of adaptive super-twisting control of permanent magnet synchronous motor[J]. Computer Simulation, 2021, 38(12): 212-216.