船舶推进系统是一个复杂的非线性系统,如何实现推进系统与船体特性的合理匹配是当前船舶动力领域研究的热点问题。因此,开展船机桨匹配特性研究对提高船舶整体性能具有非常重要的指导意义。本文基于Matlab/simulink仿真平台,采用模块化建模方法建立了某型船舶船机桨匹配数值模型。通过典型工况下推进系统稳态特性仿真,验证了模型准确性。在此基础上,开展了不同控制策略下加减速工况动态推进特性仿真。研究结果表明,主机功率调整越快,工况切换越迅速,是影响船舶动力系统动态特性的主要因素;螺距比变化率则会显著影响工况切换过程的稳定性,螺距比控制策略应与主机功率控制策略相适应,才能获得较好的船机桨匹配特性。
The ship propulsion system is a complex nonlinear system. How to achieve a reasonable match between the propulsion system and the characteristics of the hull is a hot topic in the field of marine power research. Therefore, conducting research on the matching characteristics of ship-engine-propeller systems is of great significance for improving the overall performance of ships. Based on the Matlab/simulink simulation platform, this paper establishes a numerical model of the ship-engine-propeller matching system using a modular modeling method. The accuracy of the model is verified through the simulation of the steady-state characteristics of the propulsion system under typical operating conditions. On this basis, dynamic propulsion characteristics simulations under different control strategies are carried out. The results show that the faster the adjustment of the engine power, the quicker switching of operating conditions are. Speed of the adjustment of engine power is the main factors affecting the dynamic characteristics of the marine power system; the change rate of pitch ratio will significantly affect the stability of the operating condition switching process, and the pitch ratio control strategy should be adapted to the engine power control strategy to achieve better matching characteristics of the ship's engine and propeller.
2024,46(21): 58-66 收稿日期:2024-1-2
DOI:10.3404/j.issn.1672-7649.2024.21.010
分类号:U662.9
作者简介:钟劲松(1999-),男,硕士研究生,研究方向为船舶动力系统建模与优化
参考文献:
[1] VASSILIOS P. L, NICOLAOS P. K. Modular simulation of marine propulsion systems using an engineering building block approach[C]//. Sixth International Symposium on Marine Engineering(ISME), Tokyo 2000(10): 23-27.
[2] 余又红, 孙丰瑞, 张仁兴. 基于Matlab的面向对象的燃气轮机动态仿真研究 [J]. 燃气轮机技术, 2003, 16(1): 53-56.
YU Youhong SUN Fengrui, ZHANG Renxing. The object-oriented approach for dynamic simulation of gas turbines on matlab[J]Gas Turbine Technology. 2003: 16(1): 53-56.
[3] 杨涛, 王志涛, 李淑英. 船用分轴燃气轮机的模块化建模与动态仿真[J]. 汽轮机技术, 2008, 50, (4): 267-269.
YANG Tao, WANG Zhitao, LI Shuying. Modularized modeling and dynamic simulation of split shafl gas turbine for ships[J]. Turbine Technology. 2008, 50(4): 267-269.
[4] 肖琳, 臧述升. 气垫船用燃气轮机推进系统动态性能研究[J]. 造船技术, 2007(6): 27-30.
XIAO Lin, ZANG Shusheng. The dynamic performance study of gas turbine propulsion system for air-cushion crafts[J]. Marine Technology, 2007(6): 27-30.
[5] 刘微, 李长青. 重型燃气轮机模块化建模研究[J]. 计算机仿真, 2014, 31(12): 129-132, 136.
LIU Wei, LI Changqing. Research on Modular Modeling of Heavy-Duty Gas Turbine[J]. Computer Simulation, 2014, 31(12): 129-132, 136.
[6] 彭磊. 某气垫船动力系统仿真研究[J]. 造船技术, 2018, 29(1): 51-57.
PENG Lei. Simulation of hovercraft’s power system[J]. Marine Technology, 2018, 29(1): 51-57.
[7] 李淑英. 船舶动力装置仿真技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2013: 91-120.
[8] 马文奇. 柴-燃联合动力装置集成仿真及工作特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[9] 贾欣乐, 杨盐生. 船舶运动与数学模型[M]. 大连: 大连海事大学出版社, 2001.
[10] 李殿璞. 船舶运动与建模[M]. 哈尔滨: 哈尔滨工程大学出版社, 2008.
[11] 唐鸿羽. COGAG装置动态特性与机桨匹配仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[12] 王永鼎, 王梦凡. 渔船机桨匹配研究进展[J]. 大连海洋大学学报, 2022, 37(6): 1076-1084.
WANG Yongding, WANG Mengfen. Research progress on matching of engine and propeller in fishing vessel: a review[J]. Journal of Dalian Ocean University, 2022, 37(6): 1076-1084.
[13] 陶顺行. 气垫船船机桨舵最佳工况匹配及性能优化控制技术[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[14] 孙林, 陈辉. 内河多工况船机桨匹配优化设计[J]中国舰船研究, 2022, 17(1): 187-195.
SUN Lin, CHEN Hui, GUAN C. Optimal design of ship-engine-propeller matching for inland ships under multiple operation conditions[J]. Chinese Journal of Ship Research, 2022, 17(1): 187-195.
[15] 林博. COGAG推进系统特性的仿真技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.