为帮助用户直观且深入地理解舰船的设计细节,降低实际制造时因设计错误而导致的损失,研究虚拟现实技术在舰船工业设计中的应用方法。利用虚拟现实技术的3DS Max软件,建立舰船零部件三维模型。在虚拟环境中,利用混合层次包围盒算法,进行舰船零部件三维模型碰撞检测,降低实际制造时因设计错误而导致的损失;自动装配舰船零部件三维模型,结合碰撞检测结果,调整零部件三维模型的设计结构比例,完成舰船工业设计。实验证明,该方法可有效建立舰船零部件三维模型,完成零部件三维模型碰撞检测;该方法可有效实现舰船工业设计,降低舰船总能耗。
In order to help users intuitively and deeply understand the design details of ships and reduce the loss caused by design errors in actual manufacturing, the application method of virtual reality technology in ship industrial design is studied. Using 3DS Max software of virtual reality technology, the three-dimensional model of ship parts is established to help users intuitively and deeply understand the details of ship design. In the virtual environment, the collision detection of three-dimensional model of ship parts is carried out by using the hybrid layer bounding box algorithm to reduce the loss caused by design errors in actual manufacturing. In the virtual environment, the three-dimensional model of ship parts is automatically assembled, and the proportion of the design structure of the three-dimensional model is adjusted according to the collision detection results to complete the ship industrial design. Experimental results show that this method can effectively establish the three-dimensional model of ship parts and complete the collision detection of the three-dimensional model of parts. This method can effectively realize the industrial design of ships and reduce the total energy consumption of ships.
2024,46(23): 156-159 收稿日期:2024-2-5
DOI:10.3404/j.issn.1672-7649.2024.23.027
分类号:U673.2
作者简介:熊媛媛(1981-),女,博士,讲师,研究方向为虚拟现实及计算机三维设计等
参考文献:
[1] 周宏根, 袁志超, 李磊, 等. 基于灰色关联度的船舶分段装配工艺设计[J]. 机械设计与制造, 2022, (9): 257-260, 266.
ZHOU H G, YUAN Z C, LI L, et al. Design of ship assembly process based on gray correlation[J]. Machinery Design & Manufacture, 2022, (9): 257-260, 266.
[2] 王一镜, 罗广恩, 王陈阳, 等. 基于自适应变异粒子群算法的船舶结构优化方法[J]. 中国舰船研究, 2022, 17(2): 156-164.
WANG Y J, LUO G E, WANG C Y, et al. Ship structural optimization method based on adaptive mutation particle swarm algorithm[J]. Chinese Journal of Ship Research, 2022, 17(2): 156-164.
[3] 杨尧, 李由. 结合模块化思维和PGA算法的船舶住舱布局优化研究[J]. 机械科学与技术, 2023, 42(6): 939-948.
YANG Y, LI Y. Research on ship cabin layout optimization combining modular thinking and PGA algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 939-948.
[4] 汪俊泽, 王元, 张攀, 等. 基于Mars2000的船舶中剖面通用快速优化方法[J]. 中国舰船研究, 2023, 18(5): 133-140.
WANG J Z, WANG Y, ZHANG P, et al. General fast optimization method for mid-ship section based on Mars2000[J]. Chinese Journal of Ship Research, 2023, 18(5): 133-140.
[5] 陈振霖, 罗亮, 郑龙, 等. 基于改进飞蛾扑火优化算法的船机桨匹配设计研究[J]. 计算机科学, 2024, 51(z1): 57-65.
CHEN Z L, LUO L, ZHENG L, et al. Study on matching design of ship engine and propeller based on improved moth-flame optimization algorithm[J]. Computer Science, 2024, 51(z1): 57-65.
[6] AGUIARI M, GAIOTTI M, RIZZO C M. Ship weight reduction by parametric design of hull scantling[J]. Ocean Engineering, 2022, (1): 605-619.
[7] 彭博, 王佳, 陈亚杰, 等. 基于VR的船载遥操作机械手设计与研究[J]. 船舶工程, 2023, 45(4): 8-13.
PENG B, WANG J, CHEN Y J, et al. Design and research of ship borne teleoperation manipulator based on VR[J]. Ship Engineering, 2023, 45(4): 8-13.