本文针对上述问题提出一种基于改进线性自抗扰控制的控制架构来提高无人艇路径跟踪控制的抗干扰能力及跟踪精度。首先,采用积分视距制导法来为无人艇路径跟踪制导提供依据;其次,针对跟踪微分器固有的超调问题,基于一种改进的线性自抗扰控制方法设计了无人艇转首力矩控制器,以控制无人艇受到突变载荷时突变的航向角,从而提高路径跟踪精度;然后采用潜射导弹发射反力曲线模拟无人艇受到突变载荷情况,并且考虑无人艇在风、浪、流联合作用下的干扰作用力;最后,使用Simulink进行仿真试验,并与PID控制器进行了对比。在无人艇突变载荷工况下,该方法能够在满足系统的速度约束条件下对给定的直线路径进行快速响应并精确跟踪;与传统PID控制器相比,其收敛速度提高了约50%,其最大横向误差响应幅值减小了约53%,针对风、浪、流的联合干扰,本文设计的控制器的抗干扰能力显著优于PID控制器。仿真结果表明本文提出的改进线性自抗扰路径跟踪控制器具有优良的抗干扰能力和控制效果。
A control structure based on improved Linear Active Disturbance Rejection Control is proposed to improve the USV's anti-interference ability and tracking accuracy in response to the above issues. Firstly, the integrated line-of-sight method is used to provide a basis for path following and guidance of unmanned surface vehicles; secondly, based on the inherent overshoot problem of the tracking differentiator, an improved linear auto-disturbance rejection control method is proposed to design a USV turning torque controller to control the mutation of course angle of the USV when subjected to mutation loads, thereby improving path following accuracy; thirdly, the reaction curve of submarine launched missiles is used to simulate the mutation load on unmanned boats, and considering the interference force of the USV under the combined action of ocean winds, waves, and currents; finally, simulation experiments are conducted on the USV in Simulink and compared with the PID controller. When simulating mutation load conditions on the USV, this control method can quickly recover and accurately follow the given straight path while meeting the speed constraints of the system. Compared with the traditional PID controller, its convergence speed is improved by around 50%, and its maximum lateral error response amplitude is reduced by about 53%. It is effective against combined interference from ocean winds, waves, and currents, and the anti-interference ability of the controller designed in this article is significantly better than that of the PID controller. The simulation results show that the improved LADRC controller proposed in this article has excellent anti-interference ability and robustness.
2024,46(24): 76-84 收稿日期:2023-11-20
DOI:10.3404/j.issn.1672-7649.2024.24.014
分类号:U675.9
基金项目:上海交通大学深蓝计划资助项目(SL2022MS003)
作者简介:王维健(1999-),男,硕士,研究方向为无人艇路径跟踪控制算法
参考文献:
[1] 王常顺, 肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[2] HU J X, YUAN G, XU Z, et al. Research on the course control of USV based on improved ADRC[J]. Systems Science & Control Engineering 9.1 , 2021: 44–51.
[3] 董惠玲. 基于自抗扰技术的无人艇与无人机协同运动控制[D]. 哈尔滨:哈尔滨工业大学, 2021.
[4] LAMRAOUI, HABIB C, ZHU Q D, et al. Improved active disturbance rejecter control for trajectory tracking of unmanned surface vessel[J]. Marine Systems & Ocean Technology: Journal of SOBENA--Sociedade Brasileira De Engenharia Naval 17, 2022: 18–26.
[5] 王晓慧, 黄刚, 丁洁, 等. 基于改进型ADRC算法的无人水面侦察艇轨迹跟踪[J]. 水下无人系统学报, 2021, 29(3): 286-292.
[6] 杨忠凯, 仲伟波, 冯友兵, 等. 基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制[J]. 中国舰船研究, 2021, 16(1): 121-127.
YANG Z K, ZHONG W B, FENG Y B, et al. Unmanned surface vehicle track control based on improved LOS and ADRC[J]. Chinese Journal of Ship Research, 2021, 16(1): 121-127.
[7] 胡俊祥, 葛愿, 刘硕, 等. 基于线性自抗扰控制的海上无人艇航向控制[J]. 安徽工程大学学报, 2020, 35(4): 52-59.
[8] FOSSEN, THOR I. Handbook of marine craft hydrodynamics and motion control[M]. Chichester: John Wiley & Sons, 2011.
[9] 吴斌. 基于切片理论冰间航道内船舶三维水动力计算方法研究[D]. 镇江:江苏科技大学, 2023.
[10] 李文龙, 徐亦凡. 潜射弹道导弹时潜艇运动仿真的数学模型[J]. 计算机仿真, 2003: 114–115.
[11] 胡坤, 丁风雷. 潜艇水下发射导弹运动建模及操纵控制仿真[J]. 舰船科学技术, 2013, 35(7): 109-114.
HU K, DING F L. Simulated research of submarine ballistic missile launching movement modeling and manoeuvre control[J]. Ship science and technology, 2013, 35(7): 109-114.
[12] FOSSEN T I. How to incorporate wind, waves and ocean currents in the marine craft equations of motion[J]. IFAC Proceedings Volumes, 2012, 45(27): 126-131.
[13] 朱齐丹, 于瑞亭, 夏桂华, 等. 风浪流干扰及参数不确定欠驱动船舶航迹跟踪的滑模鲁棒控制[J]. 控制理论与应用, 2012, 29(7): 959-964.
[14] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]( 2nd edition). Chichester: John Wiley & Sons. Ltd, 2021.
[15] LEKKAS A M, FOSSEN T I. Integral LOS path following for curve1d paths based on a monotone cubic Hermite spline parametrization[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2287-2301.
[16] LEKKAS, ANASTASIOS M, THOR I. F. A quaternion-based LOS guidance scheme for path following of AUVs[J]. IFAC Proceedings Volumes 46.33, 2013: 245–50.
[17] GAO, Zhiqiang. Scaling and bandwidth-parameterization based controller tuning[J]. 2003 American Control Conference, 2003: 4989–996.
[18] 谭诗利, 雷虎民, 王鹏飞. 基于正切 Sigmoid 函数的跟踪微分器[J]. 系统工程与电子技术 (2019), 41(7): 1590–1596.
TAN S L, LEI H M, WANG P F. Design of tracking differentiator based on tangent Sigmoid function[J]. Systems Engineering and Electronics, (2019), 41(7): 1590–1596.