利用计算流体力学(Computational Fluid Dynamics,CFD)方法,以SUBOFF模型为例,基于STAR-CCM+软件,采用Standard $ {k}-{\varepsilon } $湍流模型对不同边界层进行阻力预报,并将计算结果与SUBOFF模型的实验结果进行对比分析,在网格数量无关性的前提下,探究边界层第一层高度、最少网格层数、边界层总厚度分别对计算精度的影响。结果表明,增加边界层第一层高度相对减少高度对误差的影响更低,增加17倍时误差仍在5%以内;最少网格层数整体上对计算影响不大,层数波动20%,计算误差同样低于5%;边界层总厚度不起决定性作用,但相对更充足的总厚度利于计算精度。
Using the Computational Fluid Dynamics (CFD) method, the SUBOFF model is used as an example, and the Standard $ {k}-{\varepsilon } $ turbulence model is used to forecast the resistance of different boundary layers based on the STAR-CCM+ software, and the computational results are compared and analysis with the experimental results of the SUBOFF model, and the influence of the first height of the boundary layer, the minimum number of grid layers, and the total thickness of the boundary layer on the computational accuracy is investigated under the premise of the grid-independent number of grid layers, respectively. Under the premise of grid number irrelevance, the effects of the height of the first layer of the boundary layer, the minimum number of grid layers, and the total thickness of the boundary layer on the computational accuracy are investigated. The results show that: increasing the height of the first layer of the boundary layer has a lower effect on the error than decreasing the height, and the error is still within 5% when the height is increased by 17 times. The number of minimum grid layers does not have a great influence on the calculation, and the error is also lower than 5% when the number of layers fluctuates by 20%, and the total thickness of the boundary layer does not play a decisive role, but a relatively more adequate total thickness is beneficial to the calculation accuracy.
2025,47(1): 59-64 收稿日期:2024-3-7
DOI:10.3404/j.issn.1672-7649.2025.01.011
分类号:U662.2
基金项目:天津市科技计划资助项目(22YDTPJC00470)
作者简介:王海旭(1999-),男,硕士研究生,研究方向为计算流体力学
参考文献:
[1] 王英第, 陈彦臻, 周伟健, 等. 船体阻力数值预报研究及黏性流场计算[J]. 舰船科学技术, 2020, 42(1): 17-22.
WANG Y D, CHENG Y Z, ZHOU W J, et al. Numerical prediction of ship hull resistance and calculation of viscous flow field[J]. Ship Science and Technology, 2020, 42(1): 17-22.
[2] 李邦华, 黎峰, 晋文菊, 等. 边界层网格尺度对高效舵水动力数值计算的影响[J]. 舰船科学技术, 2020, 42(3): 25-28.
LI B H, LI F, JIN W J, et al. Influence of boundary layer grid scale on the numerical computation of efficient rudder hydrodynamics[J]. Ship Science and Technology, 2020, 42(3): 25-28.
[3] 朱旭东. 湍流模型的比较、改进和应用[D]. 南京: 南京航空航天大学, 2006.
[4] 资丹, 王福军, 陶然, 等. 边界层网格尺度对泵站流场计算结果影响研究[J]. 水利学报, 2016, 47(2): 139-149.
ZI D, WANG F J, TAO R, et al. Study on the influence of boundary layer grid scale on the calculation results of pumping station flow field[J]. Journal of Water Resources, 2016, 47(2): 139-149.
[5] GRIFFIN K P, FU L, MOIN P. General method for determining the boundary layer thickness in nonequilibrium flows[J]. Physical Review Fluids, 2021, 6(2): 024608.
[6] HASANUZZAMAN G. Experimental investigation of turbulent boundary layer with uniform blowing at moderate and high Reynolds numbers[M]. Cuvillier Verlag, 2022.
[7] MEDJNOUN T, RODRIGUEZ-LOPEZ E, FERREIRA M A, et al. Turbulent boundary-layer flow over regular multiscale roughness[J]. Journal of Fluid Mechanics, 2021, 917: A1.
[8] POSA A, BALARAS E. A numerical investigation of the wake of an axisymmetric body with appendages [J]. Journal of Fluid Mechanics. 2016, 792: 470-498.
[9] SEZEN S, DOGRUL A, DELEN C, et al. Investigation of self-propulsion of DARPA Suboff by RANS method[J]. Ocean Engineering, 2018, 150: 258-271.
[10] 马镜, 兰飞翔, 游航. 高速水下无人航行器仿生外形设计与阻力数值预报研究[J] .应用科技, 2024, 51(1): 158-165.
MA J, LAN F X, YOU H, Research on bionic shape design and drag numerical prediction of high-speed underwater unmanned aerial vehicles[J]. Applied Science and Technology, 2024, 51(1): 158-165.
[11] 张宇新, 李鹏, 魏博, 等. 水下航行器阻力计算及结构设计[J].应用科技, 2023, 50: 141-148.
ZHANG Y X, LI P, WEI B, et al. Underwater vehicle drag calculation and structural design[J]. Applied Science and Technology, 2023, 50: 141-148.
[12] 高超楠, 随从标, 丁宇, 等. UUV艇体阻力预测与艇机桨匹配[C]//第五届水下无人系统技术高峰论坛--以深制海, 智领发展论文集, 2022.
[13] CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of fluids Engineering-Transactions of the ASME, 2008, 130(7): 078001.