为探讨大型船舶喷气的节能效果以及分析水翼导流技术的可行性与关键问题,采用Mixture两相流模型和RANS k-ε湍流模型相结合,计入喷气消耗的功率,结合“净减阻率”的概念,构建大型平底气泡船粘性流场数值计算模型,探讨攻角、翼面到船底的距离、喷气口位置对导流效果的影响。数值计算结果表明,采用水翼导流可大幅降低喷气消耗功率,提高节能效果;距离与弦长之比d/C=0.3、攻角为6°~8°、喷气口至导缘的距离x/C=0.28时,水翼的综合导流效果最佳。直接向大型船舶底部喷气,能较大幅度降低船舶的航行阻力,但因喷气消耗的功率过大,节能效果不是特别明显。当采用水翼导流技术后,喷气的净减阻率大幅提高,由此可知,气层减阻技术应用于大型船舶的节能减排有效可行。
In order to explore the energy-saving effect by air injection of large ships and analyze the feasibility and key issues of using airfoil as deflector, counting the power consumed by the injection, combining the concept of "net drag reduction rate", a numerical calculation model of viscous flow field of large-scale flat-bottomed air layer ships is constructed by combining Mixture two-phase flow model and RANS K-ε turbulence model. The effects of angle of attack, distance from airfoil to bottom and position of jet port on the diversion effect are also discussed. The numerical calculation results show that the use of airfoil as deflector can greatly reduce the power consumption of jet and improve the energy-saving effect. When the ratio of distance to chord length d/C=0.3, angle of attack is 6°~8°, and distance from the jet port to the guide flange x/C=0.28, the comprehensive conduction effect of airfoil is the best. Directly injecting to the bottom of large ships can greatly reduce the navigation resistance of ships, but because the power consumed by jet is too large, the energy-saving effect is not particularly obvious. When technology of using airfoil as deflector is adopted, the net drag reduction rate of jet is greatly improved, which shows that the air layer drag reduction technology is effective and feasible to apply to energy saving and emission reduction of large ships.
2025,47(2): 107-112 收稿日期:2024-1-8
DOI:10.3404/j.issn.1672-7649.2025.02.018
分类号:U631.1
基金项目:国家自然科学基金资助项目(52101368);内河航运技术湖北省重点实验室基金资助项目(NHHY2020005)
作者简介:梁鹏翔(2000–),男,硕士研究生,研究方向为船舶水动力性能
参考文献:
[1] YOSHIDA Y, TAKAHASHI Y, KATO H et al. Study on the mechanism of resistance reduction by means of micro-bubble sheet and on applicability of the method to full-scale ship[C]//22nd Symposium on Naval Hydrodynamics. Washington, 1998.
[2] CORNEL T. A long road mapping drag reduction[C]//Proceedings of International Conference on Ship Drag Reduction (Smooth-Ships). Istanbul, Turkey, 2010.
[3] KUMAGAI I, NAKAMURA N, MURAI Y, et al. A new power-saving device for air bubble generation: hydrofoil air pump for ship drag reduction[C]//International Conference on Ship Drag Reduction (Smooth-Ships), Istanbul, Turkey, 2010.
[4] 董文才. 滑行艇及平板气层减阻的研究[D]. 武汉: 海军工程大学, 2003.
[5] 欧勇鹏, 董文才. 高速艇气层减阻装置的设计及内流场数值模拟[C]//2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集, 杭州: 中国造船工程协会, 2008.
OU Y P, DONG W C. Design of air layer drag reduction device and numerical simulation of internal flow field for high-speed craft[C]// Proceedings of the 2008 Academic Conference on Ship Hydrodynamics and the 30th Anniversary of the Chinese Ship Academic Circle entering ITTC, Hangzhou: The Chinese Society Of Naval Architects And Marine Engineers, 2008.
[6] 吴浩, 叶青, 欧勇鹏. 气层对肥大型船后螺旋桨的影响研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(3): 451-455.
WU H, YE Q, OU Y P. Study on the influence of air layer to the propeller of a full formed ship[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(3): 451-455.
[7] 吴浩, 欧勇鹏. 肥大型气泡船底部凹槽构型设计及优化[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(5): 963-967.
WU H, OU Y P. Design and optimization on bottom hollow of full-formed air cavity ship[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2015, 39(5): 963-967.
[8] WU H, OU Y P, YE Q. Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity[J]. Ocean Engineering, 2019, 183.
[9] 赵晓杰. 喷气减阻特性及机理研究[D]. 大连: 大连理工大学, 2021.
[10] 王秀蕊. 射流孔结构对水下喷气平板减阻影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.