随着国内海洋开发项目不断推进,海洋电力线缆铺设需求也日益增多,为此进行50 吨级海底线缆铺设的A型架结构设计。在设计过程中,以结构稳定及可靠性作为设计目标,完成了A型架结构各机构全尺寸模型的设计。为了保证机构整体稳定性,A型架结构设计采用了各机构一体化连接的设计思想。使用仿真分析方法,对A型架总体进行特性评估、变形影响分析和振动模态分析。通过建立A型架的仿真模型,并使用有限元分析法,评估了2极端工况和一种随机工况下的特性。通过对A型架结构在6阶模态下的固有频率和等效应力等数据的全面评估来验证其力学性能。
With the continuous advancement of domestic Marine development projects, the demand for Marine power cable laying is also increasing, so the A-frame structure design of 50-ton submarine cable laying is studied. In the design process, with the stability and reliability of the structure as the design goal, the full-size model of each mechanism of the A-frame structure is designed. In order to ensure the overall stability of the mechanism, the A-frame structure design adopts the design idea of integrated connection of each mechanism. By using the simulation analysis method, the characteristics evaluation, deformation influence analysis and vibration mode analysis of A-frame are carried out. By establishing the simulation model of A-frame and using finite element analysis, the characteristics of two extreme working conditions and one random working condition are evaluated. The mechanical properties of the A-frame structure are verified by A comprehensive evaluation of the natural frequency and equivalent stress data in the sixth-order mode.
2025,47(2): 138-144 收稿日期:2024-4-14
DOI:10.3404/j.issn.1672-7649.2025.02.023
分类号:U662
基金项目:国家自然科学基金重点资助项目(51839005)
作者简介:刘恒(1999 – ),男,硕士研究生,研究方向为动力装置设计与制造
参考文献:
[1] 卢志飞, 宣耀伟, 沈耀军, 等. 基于有限元技术的海底电缆铺设机械结构损伤分析[J]. 舰船科学技术, 2019, 41(6): 187-189.
LU Z F, XUAN Y W, SHEN Y J, et al. Research on the mechanical damage during the lying of submarine cables based on finite element analysis[J]. Ship Science and Technology, 2019, 41(6): 187-189.
[2] 连琏, 王道炎, 王玉娟, 等. 喷冲式滩海埋缆系统的设计[J]. 上海交通大学学报, 2001(4): 537-540.
[3] CHU Y, HATLEDAL LI, ZHANG H, et al. Virtual prototyping for maritime crane design and operations[J]. Journal of Marine Science and Technology, 2018, 23(4): 754-766.
[4] CHU Y, DENG Y, Pedersen B S, et al. Parameterization and visualization of marine crane concept design[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection, 2016.
[5] 姚海, 马志鹏, 隋振华, 等. 大型全回转起重机新型回转支承结构的优化设计[J]. 船舶工程, 2016, 38(S1): 94-97+123.
[6] KUJALA P, GOERLANDT F, WAY B, et al. Review of risk-based design for ice-class ships[J]. Marine Structures, 2019, 63(1): 181-195.
[7] LR. Code for Lifting Appliances in a Marine Environment[S]. 2023.
[8] 韩欢, 李星, 刘军, 等. 二维海底电缆铺设的微分方程模型与数值算法[J]. 数学物理学报, 2015, 35(4): 780-793.
[9] HAO D S, WANG D. Finite-element modeling of the failure of interference-fit planet carrier and shaft assembly[J]. Engineering Failure Analysis, 2013(2): 10-13.
[10] 韩崇瑞. 基于刚柔耦合动力学仿真的塔式起重机疲劳寿命分析[D]. 北京: 北京建筑大学, 2022.
[11] 李宇宁. 基于刚柔耦合模型的起重机臂架系统动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.