为指导潜艇压载水舱排水孔定量设计,探究排水孔通流面积参数与压载水舱吹除压力特性之间的关系,基于RANS模型和VOF模型,以水舱排水孔面积作为单一变量,对高压空气吹除压载水舱的过程进行数值模拟,采用相关性及回归分析的方法,分析水舱内吹除积压随排水孔通流面积变化的规律。计算结果表明,吹除压力和质量流量一定时,压载水舱内壁面最大压力与排水孔面积之间存在负相关的线性关系。研究成果对于排水孔在水舱结构安全和低噪声开孔的约束下开展定量设计具有重要指导意义。
To guide the quantitative design of drainage hole in submarine ballast water tanks and explore the relationship between the drainage hole area and the pressure characteristics of ballast water tank blowing, based on the RANS model and VOF model, the process of high-pressure air blowing out ballast water tanks was numerically simulated with the drainage hole area of the water tank as a single variable. Using correlation and regression analysis methods, analyze the law of the change in the flow area of drainage holes with accumulated pressure in the water tank. The calculation results indicated that there was a negative linear relationship between the maximum pressure on the inner wall of the ballast water tank and the drainage hole area when the blowing pressure and mass flow rate are constant. The research results have important guiding significance for the quantitative design of drainage holes under the constraints of structural safety and low noise openings in water tanks.
2025,47(4): 71-75 收稿日期:2024-4-29
DOI:10.3404/j.issn.1672-7649.2025.04.012
分类号:U674.76
基金项目:国家自然科学基金青年项目(12302334)
作者简介:方超(1991-),男,工程师,研究方向为船舶系统工程技术和海水系统减振降噪
参考文献:
[1] 羿琦, 林博群, 张万良, 等. 基于短吹模型的主压载水舱吹除仿真与实验验证[J]. 中国舰船研究, 2022, 17(3): 246-252.
YI Q, LIN Q B, ZHANG W L, et al. Simulation and experimental verification of main ballast tank blowing based on short circuit blowing model[J]. Chinese Journal of Ship Research, 2022, 17(3): 246-252.
[2] 吕帮俊, 黄斌, 彭利坤. 潜艇高压气吹除主压载水舱研究综述[J]. 舰船科学技术, 2020, 42(5): 1-5.
LV B J, HUANG B, PENG L K. Review on high-pressure air blowing the submarine main ballast tanks[J]. Ship Science and Technology, 2020, 42(5): 1-5.
[3] 胡坤, 庞晓楠, 黄海峰, 等. 潜艇高压气短吹数学模型数值仿真验证研究[J]. 计算机仿真, 2019, 36(8): 7-14.
HU K, PANG X N, HUANG H F, et al. A study on CFD numerical simulation verification about mathematical model of short-circuit high-pressure gas blowing in submarine[J]. Computer Simulation, 2019, 36(8): 7-14.
[4] 羿琦, 林博群, 张万良, 等. 基于CFD的主压载水舱吹除仿真与试验验证[J]. 船舶力学, 2023, 27(2): 218-226.
YI Q, LIN Q B, ZHANG W L, et al. CFD simulation and experimental verification of blowing process of main ballast tank[J]. Journal of Ship Mechanics, 2023, 27(2): 218-226.
[5] 张建华, 黄海峰, 刘广旭, 等. 基于VOF模型的潜艇主压载水舱吹除特性数值模拟[J]. 兵器装备工程学报, 43(7): 234-239.
ZHANG J H, HUANG H F, LIU G X, et al. Numerical simulation of blowing characteristics of submarine main ballast tanks using VOF model[J]. Journal of Ordnance Equipment Engineering, 43(7): 234-239.
[6] 吴一唯, 周军, 李辉, 等. 基于VOF法的不同形状液舱晃荡数值模拟[J]. 舰船科学技术, 2022, 44(8): 84-89.
WU Y W, ZHOU J, LI H, et al. Numerical simulation of sloshing in tanks with different shapes based on VOF method[J]. Ship Science and Technology, 2022, 44(8): 84-89.
[7] 王福军. 计算流体动力学分析: CFD软件原理及应用[M]. 北京: 清华大学出版社, 2004.
[8] 刘辉, 李其修, 吴向君, 等. 潜艇高压气吹除主压载水舱排水模型研究[J]. 海军工程大学学报, 2015, 27(2): 108-112.
LIU H, LI Q X, WU X J, et al. Drainage model of submarine high-pressure air-blowing main ballast tank[J]. Journal of Naval University of Engineering, 2015, 27(2): 108-112.