主管单位:中国船舶重工集团公司
主办单位:中国舰船研究院、中国船舶信息中心
地址:北京市朝阳区科荟路55号院
邮编:100101
电话:010-83027274
传真:
E-Mail:
刊号:ISSN ISSN:1672-7649
        CN CN:11-1885/U
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:600元/年

您所在位置:首页->过刊浏览->2016年38卷5期



舰船通海管路低频消声技术的研究进展
Research progress of low frequency noise attenuation techniques for sea-connected pipes in naval vessel
戴俊, 苏胜利
点击:1442次 下载:14次
DOI:
作者单位:1. 海军驻431厂军事代表室, 辽宁 葫芦岛 125004;
2. 武汉第二船舶设计研究所, 湖北 武汉 430064
中文关键字:实船环境;抗性消声;气囊式消声;水动力弹性板式消声;主动消声
英文关键字:environment of naval vesselreactive silencer; gasbag silence; elastic plate silencer; ANC
中文摘要:分析水管路低频消声技术的实船应用环境,指出通海管路在声传播、空间布置等方面存在的特点以及安全性、空间布置等方面的要求。在此基础上,将通海管路低频消声技术分为传统抗性消声技术、气囊式消声技术、水动力弹性板式消声技术以及主动消声技术等4个方面,结合实船环境,详细分析各项技术的优缺点,指出下一步应继续开展的工作。
英文摘要:The application environment of hydrodynamic and low frequency noise attenuation techniques in naval vessel is analyzed at first in this paper, which points out the characteristics of sound propagation and excitation, requirements of safety and size in sea water piping system. Then, hydrodynamic and low frequency noise attenuation techniques, including traditional reactive silencer, gasbag silencer, elastic plate silencer and ANC, are analyzed in detail. The advantage and disadvantage of all kinds of these techniques is presented in this paper, which indicates the work to be carried out in the future.
2016,38(5): 7-11 收稿日期:2015-02-26
DOI:10.3404/j.issn.1672-7619.2016.05.002
分类号:TB535
作者简介:戴俊(1985-),男,工程师,主要从事舰船动力装置振动噪声控制研究。
参考文献:
[1] 何祚镛.水下噪声及其控制技术进展和展望[J].应用声学, 2002, 21(1):26-34.
[2] 余永丰,庞天照,关珊珊,等.大型浮筏隔振系统筏架耦合振动研究[J]. 噪声与振动控制, 2010, 30(5):56-59.
[3] 宋港.动力吸振器在潜艇隔振设备中的应用研究[D].南京:南京航空航天大学, 2012.
[4] 赵应龙,吕志强,何琳. JYQN舰用气囊隔振器研究[J].舰船科学技术, 2006, 28(S2):89-92.
[5] 胡家雄.关于潜艇橡胶减振接管隔振效果的思考[C]//第十届船舶水下噪声学术讨论会论文集.北京:中国造船工程学会, 2005:212-214.
[6] 蔡标华,俞健,白亚鹤.舰船系统管路弹性减振设计与试验[J]. 舰船科学技术, 2011, 33(11):61-64.
[7] YUAN S Q, YANG J, YUAN J P, et al. Experimental investigation on the flow-induced noise under variable conditions for centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3):456-462.
[8] 刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社, 1993:59-69.
[9] GORIN S V, KUKLIN M V. On the operating efficiency of helmholtz resonators in deadend waveguides using fluid working media[J]. Acoustics Physics, 2012, 58(3):363-367.
[10] 柳贡民,程广福,孙惠娟,等.水管路系统压力脉动抑制装置的计算研究[J]. 哈尔滨工程大学学报, 2002, 23(4):94-97.
[11] GORIN S V, KUKLIN M V. Reducing low-frequency vibration in hydraulic systems by means of Helmholtz resonators[J]. Russian Engineering Research, 2010, 30(5):493-495.
[12] 李东升,薛晖,高岩.慢波速旁路管水动力噪声消声器降噪特性研究[J]. 中国造船, 2010, 51(4):92-99.
[13] JI Z J. Acoustic length correction of closed cylindrical side-branched tube[J]. Journal of Sound and Vibration, 2005, 283(3/5):1180-1186.
[14] 季振林.直通穿孔管消声器声学性能计算及分析[J].哈尔滨工程大学学报, 2005, 26(3):302-306.
[15] 周城光,刘碧龙,李晓东,等.腔壁弹性对充水亥姆霍兹共振器声学特性的影响:圆柱形腔等效集中参数模型[J].声学学报, 2007, 32(5):426-434.
[16] 王泽锋,胡永明,孟洲,等.水下圆柱形Helmholtz共振器的声学特性分析[J]. 物理学报, 2008, 57(11):7022-7029.
[17] 王泽锋,胡永明,熊水东,等.腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响[J].物理学报, 2009, 58(4):2507-2512.
[18] 袁建平,金荣,陈红亮,等.离心泵用赫姆霍兹水消声器声学特性数值模拟[J]. 排灌机械工程学报, 2012, 30(2):141-146.
[19] 袁建平,张瑞橙,金荣.离心泵用赫姆霍兹水消声器试验研究[J]. 排灌机械工程学报, 2013, 31(11):933-937.
[20] SELAMET A, LEE I. Helmholtz resonator with extended neck[J]. Journal of the Acoustical Society of America, 2003, 114(4 Pt 1):1975-1985.
[21] 中国船舶重工集团公司第七〇二研究所.压力自适应低频宽带弹性共振消声装置:CN103353042A[P]. 2013-10-16.
[22] 李赫.可变频充液管道消声器设计与实验研究[D].哈尔滨:哈尔滨工程大学, 2009.
[23] 高林.多线谱可调频水消声器仿真设计研究[D].哈尔滨:哈尔滨工程大学, 2011.
[24] 马文彬.水管路系统可调频消声器研究[D].哈尔滨:哈尔滨工程大学, 2005.
[25] 李英.大口径水消声器的设计与实验研究[D].哈尔滨:哈尔滨工程大学, 2005.
[26] 黄信男.气囊式水消声器性能仿真与实验研究[D].哈尔滨:哈尔滨工程大学, 2008.
[27] 王强.广谱式水消声器研究[D].哈尔滨:哈尔滨工程大学, 2011.
[28] 周鑫磊,王强,柳贡民.大口径水消声器的设计及性能实验[J]. 应用科技, 2011, 38(4):11-13.
[29] HUANG L X. A theoretical study of duct noise control by flexible panels[J]. The Journal of the Acoustical Society of America, 1999, 106(4):1801-1809.
[30] HUANG L X. Modal analysis of a drumlike silencer[J]. The Journal of the Acoustical Society of America, 2002, 112(5):2014-2025.
[31] 何涛,李东升,孙玉东,等.低频宽带板式水动力噪声消声器理论[J]. 船舶力学, 2014, 18(1/2):191-200.
[32] 何涛,孙刚,孙玉东,等.充液背腔板式水动力噪声消声器参数分析[J]. 船舶力学, 2014, 18(4):459-469.
[33] 汉森C H,斯奈德S D.噪声和振动的主动控制[M].仪垂杰,译, 北京:科学出版社, 2002:1-4.
[34] BRéVART B J, FULLER C R. Active control of coupled wave propagation in fluid-filled elastic cylindrical shells[J]. The Journal of the Acoustical Society of America, 1993, 94(3):1467-1475.
[35] BREVART B J. Active control of coupled wave propagation in fluid-filled elastic cylindrical shells[D]. Virginia:Virginia Polytechnic Institute and State University, 1994.
[36] KARTHA S C. Active, passive and active/passive control techniques for reduction of vibrational power flow in fluid filled pipes[D]. Virginia:Virginia Polytechnic Institute and State University, 2000.
[37] KIYAR M B. Active/passive control of fluid-borne and structure-borne disturbances in fluid-filled piping systems[D]. Virginia:Virginia Polytechnic Institute and State University, 2003.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:CN:11-1885/U |国内发行代码: |国际标准出版物号:ISSN:1672-7649 |国际发行代码:
主管单位:中国船舶重工集团公司  主办单位:中国舰船研究院、中国船舶信息中心
版权所有©2018舰船科学技术》编辑部 京ICP备0000000号
本系统由北京菲斯特诺科技有限公司设计开发 技术支持
您是本站第571844名访问者