主管单位:中国船舶重工集团公司
主办单位:中国舰船研究院、中国船舶信息中心
地址:北京市朝阳区科荟路55号院
邮编:100101
电话:010-83027274
传真:
E-Mail:
刊号:ISSN ISSN:1672-7649
        CN CN:11-1885/U
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:600元/年

您所在位置:首页->过刊浏览->2020年42卷1期



非周期性入水冲击问题研究进展
Research progress on the nonperiodic water-entry impact problem
孙玉松, 周穗华, 张晓兵
点击:439次 下载:0次
DOI:
作者单位:海军工程大学 兵器工程学院, 湖北 武汉 430033
中文关键字:入水冲击;研究进展;面临的问题
英文关键字:water-entry impact; research progress; problems to be solved
中文摘要:结构体入水冲击阶段周围的流体将呈现出强非线性特性,一直以来都是流体力学领域研究的热点。本文对非周期性入水冲击问题研究进展进行概述,按照理论研究、数值计算和试验研究3个方面对国外研究成果进行分类,并单独地对国内研究概况进行了总结。基于研究现状,对国内外入水冲击研究中面临的问题进行了分析,可为进一步开展入水问题研究提供参考。
英文摘要:At the initial stage of water entry, the water surrounding of impacting bodies will show strong nonlinear characteristics. This article summarized the research progress on the nonperiodic water-entry impact problem, theoretical analysis, experimental investigation and numerical simulation on the water-entry impact problems were summarized separately in terms of time sequence and domestic research situation was listed specially. Base on the research status, this article also proposed the related problems to be solved, which can provide references for the further research.
2020,42(1): 6-10 收稿日期:2019-03-22
DOI:10.3404/j.issn.1672-7649.2020.01.002
分类号:O353.4
作者简介:孙玉松(1991-),男,博士研究生,研究方向为入水冲击力学
参考文献:
[1] 秦红德, 赵林岳, 申静. 入水冲击问题综述[J]. 哈尔滨工业大学学报, 2011, 43(增刊1):152-157
[2] VON KARMAN T. The impact of seaplane floats during landing[R]. Washington DC, USA:National Advisory Committee for Aeronautics, NACA Technical Notes 321, 1929.
[3] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech, 1932, 12(4):193-215
[4] EGOROV I T. Impact on a compressible fluid[R]. Washington:NACA 1413.1956.
[5] SCOLAN Y.M., KOROBKIN A. A. Three-dimensional theory of water impact. Part 1. Inverse Wagner problem[J]. J. Fluid Mech, 2001(440):293-326
[6] EROSHIN V A, ROMANENKOV N I, SEREBRYAKOV I V., et al Hydrodynamic forces produced when blunt bodies strike the surface of a compressible fluid[J]. Mekhanika Zhidkostii Gaza, 1979(6):44-51
[7] MAY A. Review of water-entry theory and data[J]. AIAA journal, 1970(70):1-5
[8] KOROBKIN A A, PUKHNACHOV V V. Initial stage of water impact[J]. Annual Review of Fluid Mechanics, 1988(20):159-185
[9] LEE, M. LONGORIA, R. G. WILSON. D. E Cavity dynamics in high-speed water entry[J]. Phys. Fluids, 1997, 9(3):540-550
[10] LEE, M. LONGORIA, R. G. WILSON. D. E Ballistic waves in high-speed water entry[J]. Journal of Fluids and Structures, 1997(11):819-844
[11] KOROBKIN A A, PEREGRINE D H. The energy distribution resulting from an impact on a floating body[J]. Journal of Sound and Vibration, 2000, 229(3):579-605
[12] PENG, Weidong D. PEREGRINE. H. Pressure-impulse theory for plate impact on water surface[C]//The 15th International workshop on water waves and floating bodies, Caesarea, 2000:1-4.
[13] NITIKITPAIBOON, C. BATHE. K. J An arbitrary lagrangian-eulerian velocity potential formulation for fluid-structure[J]. Computers & Structures, 1993(47):871-891
[14] ANGHILERI M, SPIZZICA A. Experimental validation of finite element models for water impacts[C]//Proceedings of the Second International Crash Users Seminar. Cranfield, UK, 1995.
[15] OGER, G. DORING, M. ALESSANDRINI, B. et al Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006(213):803-822
[16] WORTHINGTON A. M Impact with a liquid surface studied with aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900(194A):175-199
[17] BOTTOMLEY G. H. The impact of a model seaplane float on water[R]. Reports and Memoranda, No 583, 1919.
[18] WATANABE. Resistance of impact on water surface[J]. Inst Phys Chem Res, 1930(12):251-267
[19] 何春涛. 典型运动体入水过程多相流动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
[20] MOHAMMAD J, MAURIZIO P. Water entry of compliant slender bodies:Theory and experiments[J]. International Journal of Mechanical Sciences, 2017, 13(59):1-16
[21] 陈学农, 何友声. 平头物体三维带空泡入水的数值模拟[J]. 力学学报, 1990, 22(2):129-138
[22] 顾懋祥, 程贯一, 张效慈. 平头旋转壳撞水水弹性效应的研究[J]. 水动力学研究与进展, 1991, 6(1):42-51
[23] 王肖钧, 赵新. 高速钢球在水中贯穿过程的数值计算[J]. 爆炸与冲击, 1992, 12(3):213-218
[24] 李森虎, 何友声, 鲁传敬. 超声速平头物体垂直撞水的数值模拟[J]. 水动力学研究与进展, 1992, 7(1):72-78
[25] 钱勤, 黄玉盈, 王石刚, 等. 任意的拉格朗日欧拉边界元-有限元混合法分析物体撞水响应[J]. 固体力学学报, 1994, 15(1):12-18
[26] 卢炽华, 何友声. 二维弹性结构入水冲击过程中的流固耦合效应[J]. 力学学报, 2000, 32(2):129-140
[27] 孙辉, 卢炽华, 何友声. 二维楔形体冲击入水时的流固耦合响应的实验研究[J]. 水动力学研究与进展, 2003, 18(1):104-109
[28] 顾建农, 张志宏, 王冲, 等. 旋转弹头水平入水空泡及弹道的实验研究[J]. 兵工学报, 2012, 22(5):540-544
[29] 潘光, 韦刚, 杜晓旭. 空投水雷入水及水下弹道的设计与仿真[J]. 火力指挥与控制, 2007, 32(3):85-93
[30] 宋保维, 杜晓旭, 孟锐, 等. 空投水雷入水冲击力仿真[J]. 鱼雷技术, 2008, 16(3):6-12
[31] 王勇虎, 石秀华, 王鹏, 等. 平头尖拱体斜入水冲击理论建模与仿真[J]. 鱼雷技术, 2008, 16(1):14-17
[32] 魏卓慧, 王树山, 马峰. 刚性截锥形弹体入水冲击载荷[J]. 兵工学报, 2010, 31(增刊1):118-120
[33] 王永虎. 空投雷弹入水冲击头型特性参数分析[J]. 航空计算技术, 2010, 40(6):14-17
[34] 秦洪德, 赵林岳, 申静. 楔形体自由入水问题研究[C]//第七届船舶力学学术委员会全体会议论文集, 北京, 2010:657-663.
[35] 王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析[J]. 西北工业大学学报, 2009, 27(5):707-712
[36] 王健, 赵庆斌, 陶钢, 等. 火箭撬水刹车高速入水冲击数值模拟[J]. 爆炸与冲击, 2010, 30(6):628-632
[37] 魏照宇, 石秀华, 王银涛, 等. 水下航行器高速斜入水冲击的探索仿真研究[J]. 西北工业大学学报, 2010, 28(5):718-723
[38] 潘光, 杨悝. 空投鱼雷入水载荷[J]. 爆炸与冲击, 2014, 34(5):521-526
[39] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31(6):579-584
[40] GUO Zi-tao, ZHANG Wei, XIAO Xin-ke,et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012(49):43-60
[41] 胡平超, 张宇文, 袁旭龙. 航行器垂直入水空泡特性与流体动力研究[J]. 计算机仿真, 2011, 28(6):5-8
[42] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟[J]. 哈尔滨工业大学学报, 2014, 46(11):24-29
[43] 朱珠, 袁绪龙. 柱体高速入水冲击载荷与空泡特性[J]. 计算机仿真, 2014, 31(3):29-33
[44] 孙凯, 党建军, 郝维敏, 等. 回转体超音速入水冲击数值仿真[J]. 鱼雷技术, 2015, 23(1):2-6
[45] 张岳青, 蔡卫军, 李建辰, 等. FEM/SPH耦合方法在鱼雷入水研究中的应用[J]. 鱼雷技术, 2017, 25(1):1-6
[46] 张伟, 黄威, 任鹏, 等. 高速弹体水平入水产生冲击波特性[J]. 哈尔滨工业大学学报, 2016, 48(4):37-41
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:CN:11-1885/U |国内发行代码: |国际标准出版物号:ISSN:1672-7649 |国际发行代码:
主管单位:中国船舶重工集团公司  主办单位:中国舰船研究院、中国船舶信息中心
版权所有©2020舰船科学技术》编辑部 京ICP备11013578号
本系统由北京菲斯特诺科技有限公司设计开发 技术支持
您是本站第2128367名访问者