复合材料加筋/夹层板壳结构在众多工程领域结构物中已得到广泛应用,研究其声振特性对于指导工程设计具有重要意义。本文对国内外复合材料加筋/夹层板壳结构声振特性的研究进行回顾、梳理和归纳,并探讨各种研究方法的适用性,以及未来的研究趋势。综述结果表明:解析与数值相结合的研究方法兼具灵活性和高效率,是研究声振特性的有效方法,也是重要的发展方向;新材料的应用给研究带来了新变化,增大了结构动力学和声学的设计空间;现有的分析方法可以模拟出结构的任意边界条件而无法还原实际边界条件,因而需要结合试验研究作为支撑。
Stiffened composite plates and sandwich composite plates is widely used in many engineering fields. The study of its vibroacoustic characteristics is instructive for its design. In this paper, the vibroacoustic research of stiffened composite plates and sandwich composite plates is reviewed as well as various research methods used in these research, the trend of future research on the vibroacoustic research is also pointed out. The results show that the semi-analytical numerical method is flexible and effective to vibroacoustic research, and it is future trends of the similar studies. The application of new materials brings new variables to the vibroacoustic research, in the same way, the application of these materials increases the design potential of the structure in the field of dynamics and acoustics. The actual boundary conditions of the structure can not be simulated by using the method of simulation calculation and theoretical calculation, it is necessary to study the boundary conditions by experiment.
2023,45(4): 1-8 收稿日期:2022-01-04
DOI:10.3404/j.issn.1672-7649.2023.04.001
分类号:U663.9+9;U661.44
基金项目:国家自然科学基金资助项目(51609252;51479205)
作者简介:武大江(1990-),男,博士研究生,助理工程师,研究方向为舰船结构强度与振动
参考文献:
[1] SHENG P, ZHANG X, LIU Z, et al. Locally resonant sonic materials[J]. Physica B:Condensed Matter, 2003, 338(1): 201–205
[2] LIU ZY, CHAN CT, SHENG P. Analytic model of phononic crystals with local resonances[J]. Physical review B Condensed matter and materials physics, 2005(1): 71
[3] BIRMAN VICTOR, KARDOMATEAS GEORGE-A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering, 2018, 142: 221–240
[4] LIU Bilong, FENG Leping, NILSSON Anders. Sound transmission through curved aircraft panels with stringer and ring frame attachments[J]. Journal of Sound and Vibration, 2007, 300(3−5): 949−973.
[5] LEE J H, KIM J. Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method[J]. Journal of Sound and Vibration, 2002, 251(2): 349−366.
[6] LEE JH, KIM J. Sound transmission through periodically stiffened cylindrical shells[J]. Journal of Sound and Vibration, 2002, 251(3): 431−456.
[7] ZHAO Dong, SQUICCIARINI G, FERGUSON N. Vibroacoustic response of stiffened thin plates to incident sound[J]. Applied Acoustics, 2021, 172: 107578.
[8] ARUNKUMAR M P, PITCHAIMANI JEYARAJ, GANGADHARAN K V. Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam[J]. Aerospace Science and Technology, 2018, 78(Jul): 1−11.
[9] ISAAC CW, PAWELCZYK M, WRONA S. Comparative study of sound transmission losses of sandwich composite double panel walls[J]. Applied Sciences, 2020, 10(4): 1543.
[10] MEJDI A, ATALLA N, GHINET S. Wave spectral finite element model for the prediction of sound transmission loss and damping of sandwich panels[J]. Computers & Structures, 2015, 158: 251–258
[11] JEYARAJ P. Vibro-acoustic behavior of an isotropic plate with arbitrarily varying thickness[J]. European Journal of Mechanics - A/Solids, 2010, 29(6): 1088−1094.
[12] LEGAULT J, MEJDI A, ATALLA N. Vibro-acoustic response of orthogonally stiffened panels: The effects of finite dimensions[J]. Journal of Sound and Vibration, 2011, 330(24): 5928–5948
[13] LI Xiangyang, YU Kaiping, ZHAO Rui. Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment[J]. Applied Acoustics, 2018, 132: 82−96.
[14] A N S, A T R M, B S K P. Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory - ScienceDirect[J]. Composite Structures, 2017, 180: 116−129.
[15] 金叶青. 基于不同理论模型的加筋层合板壳声振特性研究[D]: 哈尔滨: 哈尔滨工程大学, 2013.
[16] MEAD D J, PUJARA K K. Space-harmonic analysis of periodically supported beams: response to convected random loading[J]. Journal of Sound and Vibration, 1971, 14(4): 525−541.
[17] MEAD DENYS-J. Plates with regular stiffening in acoustic media: Vibration and radiation[J]. The Journal of the Acoustical Society of America, 1990, 83(1): 391−401.
[18] YANG Yi, MACE B R, KINGAN M J. Vibroacoustic analysis of periodic structures using a wave and finite element method[J]. Journal of Sound and Vibration, 2019, 457: 333−353.
[19] MACE B R. Sound radiation from fluid loaded orthogonally stiffened plates[J]. Journal of Sound and Vibration, 1981, 79(3): 439−452.
[20] SHEN Cheng, XIN Fengxian, LU Tianjian. Transmission loss of orthogonally stiffened laminated composite plates[C]//Journal of Mechanical Science and Technology: China Science Literature Publishing House, 2015: 275.
[21] XIN FengXian, LU TianJian. Sound radiation of parallelly stiffened plates under convected harmonic pressure excitation[J]. Science China Technological Sciences, 2012, 55(2): 496–500
[22] YIN X W, GU X J, CUI H F. et al. Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners[J]. Journal of Sound and Vibration, 2007, 306(3−5): 877−869.
[23] TITZE Maik, MISOL Malte, MONNER Hans-Peter. Examination of the vibroacoustic behavior of a grid-stiffened panel with applied passive constrained layer damping[J]. Journal of Sound and Vibration, 2019, 453.
[24] Shahgholian-ghahfarokhi Davoud, Aghaei-ruzbahani Milad, Rahimi Gholamhossein. Vibration correlation technique for the buckling load prediction of composite sandwich plates with iso-grid cores[J]. Thin-Walled Structures, 2019, 142: 392–404
[25] 汤冬. 舰船典型板架结构弹性波动力学特性研究[D]: 哈尔滨: 哈尔滨工程大学, 2018.
[26] TARKASHVAND A, DANESHJOU K, GOLMOHAMMADI A. Fg and viscoelastic models combination for vibroacoustic modeling of sandwich structures made of open and closed cell foam materials[J]. Composite Structures, 2021: 259
[27] 卢天健, 辛锋先. 轻质板壳结构设计的振动和声学基础(第一版) [M]. 北京: 科学出版社, 2014.
[28] ZHOU Haian, ZHAO Yugang, WU Huayong, et al. The vibroacoustic analysis of periodic structure-stiffened plates[J]. Journal of Sound and Vibration, 2020, 481: 115402.
[29] DROZ C, ZERGOUNE Z, BOUKADIA R, et al. Vibro-acoustic optimisation of sandwich panels using the wave/finite element method[J]. Composite Structures, 2016, 156: 108−114.
[30] RAFIEE M, NITZSCHE F, LABROSSE M. Dynamics, vibration and control of rotating composite beams and blades: A critical review[J]. Thin-Walled Structures, 2017: 795–819
[31] 刘洋, 刘宝, 王蕾. 一种分析水中结构声振耦合特性的等效源方法[J]. 海军工程大学学报, 2021, 33(1): 34–40
[32] 孙雪荣, 朱锡. 船舶水下结构噪声的研究概况与趋势[J]. 振动与冲击, 2005(1): 108–115,140
[33] MAXIT L, EGE K, TOTARO N, et al. Non resonant transmission modelling with statistical modal energy distribution analysis[J]. Journal of Sound and Vibration, 2014, 333(2): 499−519.
[34] LANGLEY R S, SMITH J R D, FAHY F J. Statistical energy analysis of periodically stiffened damped plate structures[J]. Journal of Sound and Vibration, 1997, 208(3): 407−426.
[35] SEÇGIN Abdullah, KARA Murat, OZANKAN Altay. A modal impedance-based statistical energy analysis for vibro-acoustic analysis of complex systems having structural uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(6): 1972−1989.
[36] 胡昊灏. 复合平板结构水下声辐射预报方法研究[D]: 哈尔滨: 哈尔滨工程大学, 2014.
[37] D'ALESSANDRO V, PETRONE G, FRANCO F, et al. A review of the vibroacoustics of sandwich panels: Models and experiments[J]. Journal of Sandwich Structures & Materials, 2013, 15(5): 541−582.
[38] 朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(3): 1–7
[39] SHEN C, XIN F X, LU T J. Theoretical model for sound transmission through finite sandwich structures with corrugated core[J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1066−1072.
[40] XIN Fengxian, LU Tianjian, CHEN Changqing. Sound transmission across lightweight all-metallic sandwich panels with corrugated cores[J]. Chinese Journal of Acoustics, 2009, 28(3): 231–243
[41] C SHEN. Sound transmission loss of adhesively bonded sandwich panels with pyramidal truss core: theory and experiment[J]. International Journal of Applied Mechanics, 2015, 7(1): 1550013.
[42] 付涛. 复合夹层筋板结构声振特性分析及抑制研究[D]: 哈尔滨: 哈尔滨工业大学, 2019.
[43] MEAD D J. Free wave propagation in periodically supported, infinite beams[J]. Journal of Sound and Vibration, 1970, 11(2): 181−197.
[44] MEAD D J. A new method of analyzing wave propagation in periodic structures; Applications to periodic timoshenko beams and stiffened plates[J]. Journal of Sound and Vibration, 1986, 104(1): 9−27.
[45] LIN Tian-Ran. An analytical and experimental study of the vibration response of a clamped ribbed plate[J]. Journal of Sound and Vibration, 2012, 331(4): 902−913.
[46] LIN Tian-Ran, PAN Jie. A closed form solution for the dynamic response of finite ribbed plates[J]. The Journal of the Acoustical Society of America, 2006, 119(2): 917−925.
[47] FU Tao, CHEN Zhaobo, YU Hongying, et al. An analytical study of the vibroacoustic response of a ribbed plate[J]. Aerospace Science and Technology, 2017, 73(FEB): 96−104.
[48] BRILLOUIN L. Wave propagation in periodic structures: electric filters and crystal lattices[J]. Mcgraw Hill Book Company Inc New York, 1953.
[49] 蔡园武. 周期性板结构的渐近均匀化方法及微结构优化[D]: 大连: 大连理工大学, 2014.
[50] 高涛. 基于渐近均匀化法的格栅结构振动特性研究[D]: 南京: 南京航空航天大学, 2017.
[51] HASSANI B, HINTON E. A review of homogenization and topology opimization II-analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6): 719−738.
[52] KALAMKAROV ALEXANDER L. Asymptotic homogenization of composite materials and structures[J]. Alexander L. Kalamkarov, 2009(1): 3–5
[53] REDDY R K K, ARUNKUMAR M P, BHAGAT V. Vibro-acoustic characteristics of viscoelastic sandwich panel: effect of inherent damping[J]. International Journal of Dynamics and Control, 2021, (1).
[54] CLAUDE B, DUIGOU L, GIRAULT G. Study of damped vibrations of a vibroacoustic interior problem with viscoelastic sandwich structure using a high order newton solver[J]. Journal of Sound and Vibration, 2019, 462: 114947.
[55] SHARMA N, MAHAPATRA T R, PANDA S K. Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model[J]. Steel & Composite Structures, 2018, 28(5): 629−639.
[56] MAXIT Laurent, GINOUX Jean-Marc. Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames[J]. The Journal of the Acoustical Society of America, 2010, 128(1): 137−151.
[57] CAI Yuanwu, XU Liang, CHENG Gengdong. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 57(1): 284−292.
[58] DUTRA T A, FERREIRA R T Luiz, Resende H B. A complete implementation methodology for Asymptotic Homogenization using a finite element commercial software: preprocessing and postprocessing[J]. Composite Structures, 2020, 245: 112305.
[59] CLAUDE B, DUIGOU L, GIRAULT G, et al. Study of a vibroacoustic interior problem with viscoelastic sandwich structure using the asymptotic numerical method[C]. 2018.
[60] ZHOU XQ, YU D Y, SHAO X Y. Asymptotic analysis on flexural dynamic characteristics for a laminated composite plate with embedded and perforated periodically viscoelastic damping material core[J]. Composite Structures, 2016, 154: 616–633
[61] SHEN C, XIN F X, CHENG L. Sound radiation of orthogonally stiffened laminated composite plates under airborne and structure borne excitations[J]. Composites Science and Technology, 2013, 84(4): 51−57.
[62] MEJDI A, ATALLA N. Vibroacoustic analysis of laminated composite panels stiffened by complex laminated composite stiffeners[J]. International Journal of Mechanical Sciences, 2012, 58(1): 13−26.
[63] GHINET S, ATALLA N, OSMAN H. Diffuse field transmission into infinite sandwich composite and laminate composite cylinders[J]. Journal of Sound and Vibration, 2006, 289(4): 745–778
[64] GHINET S, ATALLA N. Modeling thick composite laminate and sandwich structures with linear viscoelastic damping[J]. Computers & Structures, 2011, 89(15): 1547−1561.
[65] CHERIF R, ATALLA N. Experimental investigation of the accuracy of a vibroacoustic model for sandwich-composite panels[J]. Journal of the Acoustical Society of America, 2015, 137(3): 1541.
[66] WU X, SU Y, SHI J. Perspective of additive manufacturing for metamaterials development[J]. Smart Materials and Structures, 2019, 28(9): 093001.
[67] LOJA M, SOARES C, BARBOSA J. Analysis of functionally graded sandwich plate structures with piezoelectric skins, using b-spline finite strip method[J]. Composite Structures, 2013, 96: 606–615
[68] NATH JK, KAPURIA S. Assessment of improved zigzag and smeared theories for smart cross-ply composite cylindrical shells including transverse normal extensibility under thermoelectric loading[J]. Archive of Applied Mechanics, 2012, 82(7): 859–877
[69] 许伟龙, 彭伟才, 张俊杰, 等. 声隐身超材料发展综述[J]. 中国舰船研究, 2020, 15(4): 19–27,35
[70] CHEN Y, HUANG G, ZHOU X, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model.[J]. Journal of the Acoustical Society of America, 2014, 136(6): 2926–2934
[71] KUMAR RS, RAY MC. Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1–3 piezoelectric composites[J]. Mechanics of Compesite Materials and Structure, 2016, 23(6): 652–669
[72] GHOSH S, AGRAWAL S, PRADHAN AK, et al. Performance of vertically reinforced 1-3 piezo composites for active damping of smart sandwich beams[J]. Journal of Sandwich Structures & Materials, 2015, 17(3): 258–277
[73] 高海昌, 梅志远, 杨国威, 等. 夹层结构主动温控变阻尼振动控制技术[J]. 复合材料学报, 2020, 37(4): 816–823
[74] KHALILI S, BOTSHEKANAN dehkordi M, CARRERA E. A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with sma wires[J]. Composite Structures, 2013, 106: 635–645
[75] 周振龙, 梅志远, 徐嘉启, 等. 水下湍流激励复合材料板的振声特性研究[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 105–112
[76] 杜圆, 李海超, 庞福振, 等. 任意边界条件下矩形板薄板自由振动特性分析[J]. 振动与冲击, 2019, 38(19): 70–76
[77] 李秋红, 刘广明, 薛开, 等. 圆形薄板在任意弹性边界条件下的自由振动分析[J]. 船舶力学, 2015, 19(Z1): 162–168
[78] 曾军才, 王久法, 姚望, 等. 正交各向异性矩形板的自由振动特性分析[J]. 振动与冲击, 2015, 34(24): 123–127,143
[79] QIN Zhaoye, CHU Fulei, ZU Jean. Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study[J]. International Journal of Mechanical Sciences, 2017: 91−99.
[80] BERRY A, GUYADER J L, NICOLAS J. A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions[J]. The Journal of the Acoustical Society of America, 1990, 88(6): 2792−2802.
[81] SONG Xuyuan, HAN Qingkai, ZHAI Jingyu. Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method[J]. Composite Structures, 2015, 134(DEC.): 820−830.
[82] 刘均, 程远胜. 考虑芯层离散特性的方形蜂窝夹层板自由振动分析[J]. 固体力学学报, 2009, 30(1): 90–94
[83] LIU L, CAO D, SUN S. Vibration analysis for rotating ring-stiffened cylindrical shells with arbitrary boundary conditions[J]. Journal of Vibration and Acoustics, 2013, 135(6): 061010.
[84] LIU X, BANERJEE J R. Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method[J]. Computers & Structures, 2016, 164: 108−126.
[85] HE Dongze, SHI Dongyan, WANG Qingshan, et al. Wave based method (WBM) for free vibration analysis of cross-ply composite laminated cylindrical shells with arbitrary boundaries[J]. Composite Structures, 2019, 213(apr): 284−298.
[86] JIN Guoyong, YE Tiangui, MA Xianglong, et al. A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions[J]. International Journal of Mechanical Sciences, 2013, 75: 357–376
[87] 孙勇敢, 黎胜, 包振明. 弹性边界条件下弹性基础加筋板声辐射特性研究[J]. 噪声与振动控制, 2019: 16–23
[88] MEJDI A, ATALLA N. Dynamic and acoustic response of bidirectionally stiffened plates with eccentric stiffeners subject to airborne and structure-borne excitations[J]. Journal of Sound and Vibration, 2010, 329(21): 4422−4439.
[89] SANTONI A, SCHOENWALD S, FAUSTI P, et al. Modelling the radiation efficiency of orthotropic cross-laminated timber plates with simply-supported boundaries[J]. Applied Acoustics, 2019, 143: 112–124
[90] Documentation ABAQUS-6.14-1. Abaqus Documentation[Z], 2014.
[91] 张冠军, 朱翔, 李天匀, 等. 双层加筋板水下声振耦合特性研究[J]. 船舶力学, 2019, 23(1): 78–87
[92] 陈磊磊, 胡昊文, 张伟, 等. 水下结构振动特征值分析的有限元_边界元法研究[J]. 船舶力学, 2020, 24(9): 1196–1204
[93] 吴健, 何涛, 王纬波, 等. 基于Abaqus的舷间充水双层壳体水下声辐射计算方法验证[J]. 中国造船, 2019, 60(60): 175–184
[94] 吴健, 李泽成, 熊晨熙. 基于Abaqus的水下结构声辐射仿真方法[J]. 计算机辅助工程, 2015, 24(6): 37–41,65
[95] 刘建良, 梅志远, 张焱冰, 等. 浮力材料和橡胶格栅夹层板振动响应试验对比研究[J]. 中国舰船研究, 2019, 14(4): 1–6,13