Analysis of flow induced vibration response of single cylinder vibrator supported maglev under different flow
英文摘要:Ocean current power generation by flow induced vibration is the focus of current renewable energy research. Using magnetic suspension support instead of metal spring to provide elastic restoring force can effectively prolong the service life of the device. In this paper, the magnetic force between permanent magnets is solved based on the equivalent magnetic charge method, the magnetic spring displacement function is constructed, the magnetic force function is substituted into STAR-CCM+, the single cylinder vibrator is calculated by the fluid solid two-way coupling method, and the vibration response of the single cylinder vibrator supported by magnetic suspension under different flow velocities is studied. The results show that when the compression of the permanent magnetic spring is 1.2
D, the vibrator with
L = 0.06 m can maintain high amplitude and frequency in the velocity range of 0.4~1 m/s, and the vibrator with
l = 0.07 m and
l=0.08 m has large frequency in the velocity range of 0.8~1 m/s, which can reach 2.6 Hz.
2023,45(4): 14-17 收稿日期:2021-12-13
DOI:10.3404/j.issn.1672-7649.2023.04.003
分类号:U661.3
基金项目:江苏省自然科学基金面上项目(BK20211342);江苏省“六大人才高峰”高层次人才资助项目(2018-KTHY-033)
作者简介:邵禄宇(1995-),男,硕士,主要从事海洋可再生能源利用技术研究
参考文献:
[1] 马冬娜. 海洋能发电现状分析[J]. 科技资讯, 2015, 13(20): 224–225
[2] BERNITSAS MICHAEL M, RAGHAVAN KAMALDEV, BEN SIMON Y, et al. A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 10−24.
[3] LOBO V , MAINSAH N , BANERJEE A , et al. Design feasibility of a vortex induced vibration based hydro-kinetic energy harvesting system[C]// IEEE Green Technologies Conference. IEEE, 2011.
[4] WU W, SUN H, LV B, et al. Modelling of a hydrokinetic energy converter for flow-induced vibration based on experimental data[J]. Ocean Engineering, 2018, 155(5): 392–410.
[5] 谭俊哲, 王保振, 王树杰, 等. 直线发电机在流致振动潮流能发电装置中的应用研究[J]. 太阳能学报, 2020, 41(9): 9−14.
[6] 李莉, 葛占岭, 安然然, 等. 一种涡致振动压电发电结构的仿真与实验分析[J]. 通信电源技术, 2017, 34(6): 21–25
[7] 白旭, 乐智斌. 一种具有磁边界的涡激振动发电装置[P]. 江苏省: CN109286300B, 2020-08-25.
[8] 白旭, 罗小芳, 乐智斌. 一种随振幅转换的磁边界涡激振动发电装置[P]. 江苏省: CN109378934B, 2020-08-25.
[9] MASOUMI M, WANG Y. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment[J]. Journal of Sound & Vibration, 2016, 381: 192–205
[10] 张钢, 张坚, 张海龙, 等. 基于等效磁荷法用蒙特卡洛法计算永磁轴承磁力[J]. 轴承, 2013(10): 1–4
[11] 赵凯华, 陈熙谋. 电磁学[M]. 北京: 人民教育出版社, 1979.
[12] LEE J H, BERNITSAS M M. High-damping, high-reynolds VIV tests for energy harnessing using the VIVACE converter[J]. Ocean Engineering, 2011, 38(16): 1697–1712
[13] 贾晓荷. 单圆柱及双圆柱绕流的大涡模拟[D]. 上海: 上海交通大学, 2008.