Research on optimization design of rigid-flexible heterogeneous water-lubricated bearing composite materials
英文摘要:Aiming at the problem of limited mechanical properties caused by the single structure of the traditional water-lubricated bearing lining material, this paper studies a rigid-flexible heterogeneous composite biomimetic material. Bearing lining material for better mechanical properties; Because the composite bionic material has structural symmetry, the finite element analysis software Abaqus is used to simulate a volume element in the entire structure. The load-bearing properties of the structural units without fibers and those with fibers were compared and analyzed, and the effects of different fiber helix angles and fiber radii on the load-bearing properties of the material under the same fiber structure were obtained, and the optimal rigid-flex two-phase ratio was obtained. The research results show that the flexible matrix can support and protect the fiber structure, and the fiber helix angle and fiber radius need to be selected according to the performance requirements of the material. In order to have the best mechanical performance of the volume element, the optimal rigid-flex two-phase ratio of the volume element needs to be selected. In the research of this paper, under the same load condition, the mechanical properties of the volume unit are optimal when the fiber helix angle is 30°and the fiber radius is 0.6 mm. The research conclusion shows that the fiber structure composite with rigid-flexible phase has better mechanical properties than traditional water-lubricated bearing materials.
2023,45(4): 30-34 收稿日期:2022-03-16
DOI:10.3404/j.issn.1672-7649.2023.04.006
分类号:U664.21
基金项目:国家自然科学基金面上项目(52071244)
作者简介:李瑞卿(1998-),男,硕士研究生,研究方向为船舶推进系统性能优化与仿真
参考文献:
[1] 葛丽芹, XUAN Hongyun. 基于层层自组装的自修复主客体薄膜[C]// 中国化学会第十六届胶体与界面化学会议论文摘要集——第三分会: 软物质与超分子自组装. 青岛, 2017: 36–37.
[2] YAN Z M, ZHOU X C, QIN H L, et al. Study on tribological and vibration performance of a new uhmwpe/graphite/nbr water lubricated bearing material[J]. Wear, 2015: 332–333
[3] 周武. 结构—功能仿生复合材料研究与设计[D]. 杭州: 浙江大学, 2013.
[4] 王玉玺. 基于Ansys流固耦合的螺旋槽水润滑橡胶轴承的润滑特性研究[D]. 桂林: 桂林理工大学, 2017.
[5] 徐世传. 功能化改性橡胶材料在轮胎胶料中的应用[J]. 橡胶科技市场, 2011, 9(11): 16–24
[6] 王美术, 王优强, 李超. 沟槽结构对水润滑超高分子量聚乙烯轴承力学性能的影响[J]. 润滑与密封, 2011, 36(12): 32–34+40
[7] 田宇忠. 基于有限元的水润滑橡胶尾轴承模态分析及试验研究[D]. 武汉: 武汉理工大学, 2010.
[8] 王建, 王优强, 范晓梦, 等. 材料和衬套厚度对水润滑阶梯腔尾轴承力学性能有限元分析[J]. 舰船科学技术, 2017, 39(15): 64–69
WANG J, WANG Y Q, FAN X M, et al. The mechancial analysis of material and bearing bushing thickness of water lubricated ladder cavity stern bearing by finite element[J]. Ship Science and Technology, 2017, 39(15): 64–69
[9] 盛晨兴, 马成, 吴祖旻. 条形沟槽深度对船舶水润滑尾轴承材料摩擦性能的影响[J]. 船舶工程, 2018, 40(6): 31–35
[10] 郭智威, 袁成清, 刘爱学, 等. 基于仿生的水润滑尾轴承材料自润滑性能研究[J]. 润滑与密封, 2016, 41(11): 124−128+140.
GUO Z W, YUAN C Q, LIU A X, et al. Study on self-lubrication performance of water lubricated stern tube bearing material based on bionics[J]. Lubrication Engineering, 2016, 41(11): 124−128+140.
[11] KUILLA T, BHADRA S, YAO D H, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350–1375.
[12] 青岛科技大学高性能橡胶材料改性与成型加工团队[J]. 弹性体, 2021, 31(5): 3.
[13] PENG E G, LIU Z L, LAN F, et al. Research on noise generation mechanism of rubber material for water-lubricated bearings[J]. Applied Mechanics and Materials, 2011, 84–85: 539–543.
[14] 盖力康, 付宜风, 董从林, 等. 船舶水润滑尾轴承材料摩擦磨损性能研究[C]// 中国机械工程学会. 中国机械工程学会, 北京, 2016.
[15] 王隽, 杨俊, 张雪冰, 等. 水润滑橡胶轴承振动噪声特性分析[J]. 节能技术, 2012(5): 392–396