流噪声的降低对水下航行器的隐蔽性提升、主动声呐系统探测能力的提高具有重要意义。首部作为水下航行器主要构成部分,其线型设计的优劣直接关系到流噪声性能和声呐系统工作环境的好坏。基于大涡模拟(LES)的流场计算结果,采用ACTRAN这一声学软件对2种不同头部线型、不同速度、不同攻角、不同监测点处的流噪声性能进行研究。分析研究发现,水下航行器流噪声能量主要集中在低频段,随着速度的增大而增大。在速度、攻角相同的情况下,头部端面半径小、头部长度较长的模型具有较好的流噪声性能。在同一模型下,头部驻点处的流噪声比头部端面一定半径处任何点的流噪声要小。将数值模拟与水下航行器流噪声特性水洞试验研究进行对比,两者得到的结论一致。
The decrease of flow-induced noise plays an important role in acoustic stealth condition of underwater vehicle and active sonar detection performance. The design of Underwater vehicle head, the important organ of underwater vehicle, directly affects the flow-induced noise performance and working circumstance of sonar. Based on the result of Large Eddy Simulation (LES), two different head lines are selected to research their flow-induced noise at different velocities, different incident angles and different testing point positions, by using software ACTRAN. Several conclusions are drawn through analysis. Flow-induced noise energy mainly concentrates on low frequency and increases with the increasing of velocity of underwater vehicle. At the same velocity and angle, underwater vehicle head with smaller radius and longer length owns a better flow-induced noise performance. For the same model, compared with other positions of front-section, the flow-induced noise overall sound pressure level of stagnation point is the smallest. Comparing numerical simulations with the Water-Tunnel experiment about Flow-Noise, the same conclusion can be drawn.
2017,(): 14-19 收稿日期:2017-07-24
DOI:10.3404/j.issn.1672-7649.2017.12.004
分类号:TP391
基金项目:船舶振动噪声重点实验室资助项目(9140C280105150C28001)
作者简介:张磊(1988-),男,博士研究生,研究方向为流体力学、水动力噪声
参考文献:
[1] 缪旭弘, 王振全. 舰艇水下噪声控制技术现状及发展对策[C]//第十届船舶水下噪声学术讨论会, 北京, 2005.
MIAO Xu-hong, WANG Zhen-quan. The current situation and development strategies of underwater noise control technology in naval ships[C]//The 10-th Symposium of Marine Underwater Noise, Beijin, 2005.
[2] 黄高桥, 潘光.水下航行器流噪声特性水洞试验研究[J]. 西北工业大学学报, 2015, 33(1): 141-146.
HUANG Gao-qiao, PAN Guang. Water-tunnel experiment about flow-noise characteristic of underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 141-146.
[3] 武昊, 潘光, 黄桥高, 等.水下航行器头部流噪声数值仿真与试验[J]. 火力与指挥控制, 2012, 37(8): 133-136.
WU Hao, PAN Guang, HUANG Qiao-gao, et al. Numerical simulation and experiment research on underwater vehicle head flow noise[J]. Fire Control & Command Control, 2012, 37(8): 133-136.
[4] 卢云涛, 张怀新, 潘徐杰.四种湍流模型计算回转体流噪声的对比分析[J]. 水动力学研究与进展, A辑, 2008, 23(3): 348-355.
LU Yun-tao, ZHANG Huai-xin, PAN Xu-jie. Comparison between the simulations of flow-noise of a submarine-like body with four different turbulent models[J]. Chinese Journal of Hydrodynamics, 2008, 23(3): 348-355.
[5] 蒋涛, 马军, 张萌.基于大涡模拟的潜艇流噪声预测技术[J]. 海军工程大学学报, 2013, 25(6): 64-68.
JIANG Tao, MA Jun, ZHANG Meng. Prediction of submarine hydrodynamic noise by using large eddy simulation[J]. Journal of Naval University of Engineering, 2013, 25(6)64-68.
[6] LIGHTHILL M J. On sound generated aerodynamically I. General theory. Proc Royal Soc London, Ser A. 1952, 200(1107): 564-587.
[7] LIGHTHILL M J. On sound generated aerodynamically Ⅱ. Turbulence as a source of sound. Proc Royal Soc London, Ser A. 1954, 222: 1-25.
[8] 孟堃宇.基于大涡模拟的潜艇脉动压力与流噪声性能数值计算[D]. 上海: 上海交通大学, 2011.
[9] 刘继明.水下航行器水动力噪声分离预报与研究[D]. 武汉: 华中科技大学, 2014.