本文概述船舶噪声的定义、来源、造成的影响以及降低船舶噪声所采用的技术方法,介绍国内外船舶噪声控制技术的研究现状,从主动控制技术、被动控制技术、主被动混合控制技术3个方面论述船舶降噪技术。重点介绍了表面涂层技术对于降低船舶噪声的应用,分析了阻尼涂层的降噪机理及降噪性能,最后阐述几种对于船舶降噪技术具有应用前景的新型材料以及未来船舶降噪技术的发展趋势。
In this paper, the definition, source, impact, and method of noise reduction are described. Domestic and foreign ship noise control technology was introduced. The ship noise reduction technology was introduced from three aspects: active control technology, passive control technology and active-passive hybrid control technology. The application of surface coating technology to reduce ship noise was highlighted, the noise reduction mechanism and noise reduction performance of the damping coating were analyzed. Finally, several new materials with application prospects for ship noise reduction technology and the development trend of future ship noise reduction technology are introduced.
2019,41(12): 1-5 收稿日期:2019-02-21
DOI:10.3404/j.issn.1672-7649.2019.12.001
分类号:TB535
基金项目:绿色轻工材料湖北省重点实验室开放基金资助项目(201611B12);湖北工业大学启动金资助项目(BSQD12133);太阳能高效利用湖北省协同创新中心开放基金资助项目(HBSKFMS2014024)
作者简介:古龙(1996-),男,硕士研究生,主要研究方向为金属材料表面处理
参考文献:
[1] 熊英蕾. 噪声新规在平台供应船中的应用[J]. 船舶工程, 2018, 40(S1): 93–97 XIONG Ying-lei. Application of new noise rules in platform supply vessel[J]. Ship engineering, 2018, 40(S1): 93–97
[2] 高峰. 欧洲国家海军潜艇减振降噪技术发展展望[J]. 舰船科学技术, 2015, 37(10): 160–164 GAO Feng. Development prospect on the vibration isolation and noise reduction technology of submarine in European countries[J]. Ship science and technology, 2015, 37(10): 160–164
[3] 韦璇, 马玉璞, 孙社营. 舰船声隐身技术和材料的发展现状与展望[J]. 舰船科学技术, 2006(6): 22–27 WEI Xuan, MA Yu-pu, SUN She-ying. The present status and prospect of acoustic stealth techniques and materials on warships[J]. Ship science and technology, 2006(6): 22–27
[4] 李阳, 何琳, 崔立林, 等. 螺旋桨空化对噪声调制特征影响研究[J]. 舰船科学技术, 2018, 40(17): 1–5 LI Yang, HE Lin, CUI Li-lin, et al. Research on effect of noise modulation properties induced by propeller cavitation[J]. Ship science and technology, 2018, 40(17): 1–5
[5] ANDRE M, SCHAAR M V D, SANCHEZ A M, et al. Underwater acoustic observatories to reduce ship noise footprint: A risk assessment model to mitigate the impact of shipping noise on marine fauna[C]//Techno-ocean. IEEE, 2017.
[6] 何琳, 徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2): 128–136 HE Lin, XU Wei. Naval vessel machinery mounting technology and recent advances[J]. Acta acustica, 2013, 38(2): 128–136
[7] 蔡文佳, 周俊, 耿厚才. 船舶居住舱室空调通风管路隔声包覆方案设计[J]. 噪声与振动控制, 2018, 38(S1): 323–325
[8] WANG Z, MAK C M. Application of a movable active vibration control system on a floating raft[J]. Journal of Sound and Vibration, 2018, 414: 233–244
[9] ZHANG K, HAO L, DU M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1282–1299
[10] 吴延岩. TiN/ZrN和TiZrN复合涂层的阻尼特性研究[D]. 沈阳: 东北大学, 2011.
[11] 郑荻. 船舶低频振动噪声的自主控制方法[J]. 舰船科学技术, 2018, 40(18): 28–30 ZHENG Di. Autonomous control method of ship's low frequency vibration noise[J]. Ship science and technology, 2018, 40(18): 28–30
[12] YUNCHUAN C, YAOQING Z, HONGMEI H, et al. The study on synthesis and application of PU-PA interpenetrating polymer network for damping of high-speed rail vehicle[J]. Paint & Coatings Industry, 2013
[13] MOITA, JOSÉ S, ARAÚJO, et al. Active-passive damping in functionally graded sandwich plate/shell structures[J]. Composite Structures, 2018: S026382231734031X
[14] HAJMOHAMMAD M H, FARROKHIAN A, KOLAHCHI R. Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory[J]. Aerospace Science and Technology, 2018: S1270963818300178
[15] 胡旋烨, 黄国胜, 程旭东. 热障涂层制备工艺的综述[J]. 热加工工艺, 2017, 46(24): 6–9+13 HU Xuan-ye, HUANG Guo-sheng, CHENG Xu-dong. Review on preparation process of thermal barrier coating[J]. Hot working technology, 2017, 46(24): 6–9+13
[16] TASSINI N, PATSIAS S, LAMBRINOU K. Ceramic coatings: A phenomenological modeling for damping behavior related to microstructural features[J]. Materials Science & Engineering A, 2006, 442(1): 509–513
[17] 杨铁军, 靳国永, 李玩幽, 等. 舰船动力装置振动主动控制技术研究[J]. 舰船科学技术, 2006(S2): 46–53 YANG Tie-jun, JIN Guo-yong, LI Wan-you, et al. Study on active control techniques for warship power plant[J]. Ship science and technology, 2006(S2): 46–53
[18] 刘小玲, 王旭, 郭莹, 等. 国外振动噪声有源控制技术发展现状[J]. 舰船科学技术, 2011, 33(4): 151–155 LIU Xiao-ling, WANG Xu, GUO Ying, et al. Developing situation on active control of vibration and noise[J]. Ship science and technology, 2011, 33(4): 151–155
[19] WANG Z, MAK C M. Application of a movable active vibration control system on a floating raft[J]. Journal of Sound and Vibration, 2018, 414: 233–244
[20] 李彦, 何琳, 帅长庚, 等. 船舶机械磁悬浮气囊混合隔振技术[J]. 声学学报, 2015, 40(5): 751–760 LI Yan, HE Lin, SHUAI Chang-geng, et al. Vibration solation technology for ship machinery using electromagnetic actuator and air spring[J]. Acta acustica, 2015, 40(5): 751–760
[21] 朱竑祯, 王纬波, 高存法. 新型材料在船舶减振降噪方面的前景与应用[J]. 舰船科学技术, 2016, 38(23): 1–8 ZHU Hong-zhen, WANG Wei-bo, GAO Cun-fa. The prospect and application of new materials on vibration and sound reduction of ships[J]. Ship science and technology, 2016, 38(23): 1–8
[22] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1–14 YU Jing-un, IE Yan, EI Xu. State-of-art of metamaterials with negative poisson’s ratio[J]. Journal of mechanical engineering, 2018, 54(13): 1–14
[23] JEONG J H, KIM D K, CHOI S, et al. Polarimetric polarization-maintaining photonic crystal fiber vibration sensor with shortest sensor head[J]. IEEE Sensors Journal, 2018: 1–1
[24] 姜恒. 多尺度结构功能材料在水下声隐身中的应用基础研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[25] KUPERMAN W A. Ocean noise: Lose it or use it[J]. Journal of the Acoustical Society of America, 2013, 133(5): 3504