针对小型平台面临的抗干扰低截获水声通信需求,将水声信道和外部干扰对水声通信的影响概括为乘性干扰和加性干扰并进行梳理分析,并据此围绕基于通信体制的干扰规避、基于信道均衡的乘性干扰消除和基于信道估计的加性干扰抑制对干扰背景下的小型平台水声通信技术进行系统性概述,最后对复杂环境下水下小型平台抗干扰水声通信技术要点和具体应用进行总结。
In response to the anti-interference and low-interception underwater acoustic communication requirements faced by small unmanned platforms, the impact of underwater acoustic channel and external interference on underwater acoustic communication is summarized and classified as multiplicative interference and additive interference. Based on this, a systematic overview of underwater acoustic communication technology for small unmanned platforms under interference backgrounds is provided, focusing on interference avoidance based on communication systems, multiplicative interference elimination based on channel equalization, and additive interference suppression based on channel estimation. Finally, the key points and several applications of robust anti-interference underwater acoustic communication technology for small underwater unmanned platforms in complex environments are summarized.
2025,47(5): 16-23 收稿日期:2024-3-6
DOI:10.3404/j.issn.1672-7649.2025.05.003
分类号:TN929.3
作者简介:曹洪茹(1995 – ),女,博士研究生,研究方向为水声通信及信号处理
参考文献:
[1] 王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状[J]. 信号处理, 2019, 35(9): 1441-1449.
[2] JIANG W, YANG X, TONG F, et al. A low-complexity underwater acoustic coherent communication system for small AUV[J]. Remote Sensor, 2022, 14: 3405.
[3] JIANG W, TAO Q, YAO J, et al. R&D of a low-complexity OFDM acoustic communication payload for Micro-AUV in confined space[J]. EURASIP Journal on Adrances in Signal Process, 2022, 64.
[4] 姚俊辉, 赵燕锋, 童峰, 等. 面向小型水下无人平台的移动水声通信系统[J]. 水下无人系统学报, 2022, 30(6): 761-767.
[5] XIAO H, YIN J W, TIAN Y N, et al. Underwater acoustic communication to an unmanned underwater vehicle with a compact vector sensor array[J]. IEEE Journal of Ocean Engineering, 2019, 184: 85-90.
[6] 赵云江. 带内全双工水声通信自干扰抵消关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[7] 张歆, 张小蓟. 水声通信理论与应用[M]. 西安: 西北工业大学出版社, 2012.
[8] QARABAQI P, STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701-717.
[9] 王桂胜, 董淑福, 黄国策. 无人系统认知联合抗干扰通信研究综述[J]. 计算机工程与应用, 2022, 58(8): 1-11.
[10] 葛威. 强干扰环境下单载波水声通信技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[11] ZHAO Y J, QIAO G, et al. Self-interference channel modeling for In-Band Full-Duplex underwater acoustic modem[J]. Applied Acoustics, 2020: 107687.
[12] STOJANOVIC M, FREITAG L. MMSE acquisition of DSSS acoustic communications signals[C]//IEEE Oceans Conference, 2004.
[13] E M SOZER, J G PROAKIS, M STOJANOVIC, et al. Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements[C]//IEEE Oceans Conference, 1999, (1): 228–233.
[14] 何成兵, 黄建国, 韩晶, 等. 循环移位扩频水声通信[J]. 物理学报, 2009, 58(12): 8379-8385.
[15] 韩晶, 黄建国, 张群飞, 等. 正交M-ary/DS 扩频及其在水声远程通信中的应用[J]. 西北工业大学学报, 2006, 4(4): 463-467.
[16] 王海斌, 吴立新. 混沌调频M-ary方式在远程水声通信中的应用[J]. 声学学报, 2004, 29(2): 161-166.
[17] 殷敬伟, 王蕾, 张晓. 并行组合扩频技术在水声通信中的应用. 哈尔滨工程大学学报, 2010, 31(7): 959-962.
[18] WU J Q, QIAO G. The research on improved companding transformation for reducing PAPR in underwater acoustic OFDM communication system[J], Discrete Dynamics in Nature and Society, 2016(6).
[19] 宋岩. OFDM水声通信中载波间干扰抑制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[20] 马璐. 多用户OFDM水声通信技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[21] 王巍. MIMO-OFDM水声通信关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[22] 殷敬伟. 水声通信原理及信号处理技术[M]. 北京: 国防工业出版社, 2011.
[23] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]// IEEE Wireless Communications and Networking Conference(WCNC). San Francisco, CA: IEEE, 2017.
[24] 林静怡, 孙宗鑫, 刘宇飞. OTFS水声通信技术研究现状与展望[J]. 数字海洋与水下攻防, 2022, 5(6): 502-509.
[25] STOJANOVIC M, CATIPOVIC J A, PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100-111.
[26] STOJANOVIC M, CATIPOVIC J A, PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1621-1631.
[27] SONG H C, HODGKISS W, KUPERMAN W A, et al. Improvement of time-reversal communications using adaptive channel equalizers[J]. IEEE Journal of Ocean Engineering, 2006, 31(2): 487-496.
[28] SONG H C. Bidirectional equalization for underwater acoustic communication[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 342-347.
[29] 韩笑, 生雪莉, 殷敬伟, 等. 基于双向判决反馈均衡器的水声通信海试试验研究[J]. 兵工学报, 2016, 37(3): 553-558.
[30] T CHLER M, SINGER A C, KOETTER R. Minimum mean squared error equalization using a priori information[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 673-683.
[31] BLACKMON F. SOZER E and PROAKIS J. Iterative equalization, decoding and soft diversity combining for underwater acoustic channels[C] //Proceedings of Oceans 2002. Biloxi, MI, USA, 2002, (4): 2425-2428.
[32] OBERG T, NILSSON B. Underwater communication link with iterative equalization[C]//Proceedings of Oceans 2006. Boston, MA, USA, 2006.
[33] CHOI J W, DROST R J, SINGER A C, et al. Iterative multi-channel equalization and decoding for high frequency underwater acoustic communications[C]//Proceedings of the 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt, Germany, 2008.
[34] XI J Y, YAN S F, XU L J, et al. Bidirectional turbo equalization for underwater acoustic communications[J]. Chinese Journal of Acoustics, 2016, 35(4): 440-451.
[35] RAMADAN Z, POULARIKAS A. Performance analysis of a new variable step-size LMS algorithm with error nonlinearities[C]// Proceedings of the 36th Southeastern Symposium on System Theory. Atlanta, GA, USA, 2004.
[36] 章坚武, 余皓, 章谦骅. 改进的双曲正切函数的变步长LMS算法[J]. 通信学报, 2020, 41(11): 120-127.
[37] ZHAO L, ZHU W Q, ZHU M. An adaptive equalization algorithm for underwater acoustic coherent communication system[J]. Journal of Electronics & Information technology, 2008, 30(3): 648-651.
[38] ZHANG Y W, LIU LU, SUN D J, et al. Single-carrier underwater acoustic communication combined with channel shortening and dichotomous coordinate descent recursive least squares with variable forgetting factor[J]. IET Communications, 2015, 9(15): 1867-1876.
[39] LIU L, ZHANG Y W, SUN D J. VFF l1-norm penalized widely linear RLS algorithm using DCD iterations for underwater acoustic communication[J]. IET Communications, 2017, 11(5): 615-621.
[40] ZHANG Y W, ZAKHAROV Y V, LI J H. Soft-decision-driven sparse channel estimation and turbo equalization for MIMO underwater acoustic communications[J]. IEEE Access, 2018, 6: 4955-4973.
[41] XI J Y, YAN S F, XU L J, et al. Frequency–time domain Turbo equalization for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2020, 45(2): 665-679.
[42] YIN J W, GE E, HAN X, et al. Hybrid carrier underwater acoustic communication based on joint time-frequency domain equalization[J]. IEEE Access, 2019(7): 39129-39141.
[43] 陆胤亨, 赵云江, 青昕, 等. 带内全双工水声通信空间域自干扰抵消方法[J]. 数字海洋与水下攻防, 2022, 5(6): 494-501.
[44] SUZUKI T, TRAN H M, WADA T. An underwater acoustic OFDM communication system with shrimp(impulsive)noise cancelling[C]// Proceedings of 2014 International Conference on Computing, Management and Telecommunications, 2014.
[45] 陈晓艳. 水声通信中定时同步和信道估计技术研究[D]. 杭州: 杭州电子科技大学, 2021.
[46] CHEN P, RONG Y, NORDHOLM S, et al. Joint channel estimation and impulsive noise mitigation in underwater acoustic OFDM communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 6165-6178.
[47] PELEKANAKIS K, CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195.
[48] LI W, PREISIG J C. Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927-939.
[49] BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 58(3): 1708-1721.
[50] YIN Y, LIU S, QIAO G, et al. OFDM demodulation using virtual time reversal processing in underwater acoustic communications[J]. Journal of Computational Acoustics, 2015, 23(4): 1540011.
[51] WANG S C, HE Z Q, NIU K, et al. A sparse Bayesian learning based joint channel and impulsive noise estimation algorithm for underwater acoustic OFDM communication systems[C]//Proceedings of 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans(OTO). IEEE, 2018.
[52] 宋庆军. 基于稀疏贝叶斯学习的水声OFDM稀疏信道估计[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[53] 殷敬伟, 高新博, 韩笑, 等. 稀疏贝叶斯学习水声信道估计与脉冲噪声抑制方法[J]. 声学学报, 2021, 46(6): 813-824.
[54] WANG S C, HE Z Q, NIU K, et al. New results on joint channel impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19: 2601-2612.
[55] 程华康, 王好贤. 基于卡尔曼滤波的时变水声信道估计[J]. 声学技术, 2022, 41(6): 833-837.
[56] 杨斌斌, 鄢社锋, 章绍晨, 等. 基于Kalman滤波的水声混合双向迭代信道均衡算法[J]. 电子与信息学报, 2022, 44(6): 1879-1886.
[57] 张永霖, 王海斌, 李超, 等. 水声通信中的信道估计与机器学习交叉研究进展[J]. 声学技术, 2022, 41(3): 334-345.
[58] 蒋伊琳, 王林森, 李金鑫. 基于深度神经网络的收发同时系统中自干扰数字对消算法[J]. 电子与信息学报, 2022, 44(12): 4229-4237.
[59] LI X Y, YIN X H, YAO X. Self-interference cancellation in radar jammer based on deep neural networks[C]//Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 2020.
[60] MOSAVI M R, SHAFIEE F. Narrowband interference suppression for GPS navigation using neural networks[J]. GPS Solutions, 2016, 20(3): 341-351.
[61] 张国梅, 张欣, 尹佳文, 等. 基于深度残差神经网络的GNSS接收机干扰抑制方案[J]. 数据采集与处理, 2023, 38(2): 293-303.