水下航行器的机头对于冲击具有很强的非线性影响,机头母线特征对尾流结构和稳定性起着重要的作用。本文采用粒子图像测速技术,在雷诺数$ 1.0\times {10}^{5}\leqslant Re\leqslant 1.3\times {10}^{5} $和淹深比h/D=1、2范围内,对2种不同的机头弧面半径与机身半径之比λ进行实验研究,利用加速度计和高速摄像机对水下航行器进行实验。结果表明,淹深比和机头设计对尾流特性和稳定性有显著影响。在淹深比为1时,小比例机头尾流影响范围较小且流场更稳定。随着机体比例增加,尾流影响范围扩大,冲击载荷增加。当淹深比为2时,消除自由表面影响后,尾流流动特性受雷诺数影响更加明显。
The nose of an underwater vehicle has a strong nonlinear impact on impact, and the characteristics of the nose busbar play an important role in the wake structure and stability. This article uses particle image velocimetry technology to conduct experimental research on two different ratios of nose radius to body radius, λ, within the range of Reynolds number $ 1.0\times {10}^{5}\leqslant Re\leqslant 1.3\times {10}^{5} $ and submergence ratio h/D=1,2. Experiments were conducted on underwater vehicles using accelerometers and high-speed cameras. The results indicate that the flooding depth ratio and nose design have a significant impact on the wake characteristics and stability. When the submergence ratio is 1, the influence range of the small proportion nose wake is smaller and the flow field is more stable. As the proportion of the body increases, the range of wake influence expands and the impact load increases. When the submergence ratio is 2, after eliminating the influence of free surface, the wake flow characteristics are more significantly affected by Reynolds number.
2025,47(5): 31-36 收稿日期:2024-4-23
DOI:10.3404/j.issn.1672-7649.2025.05.005
分类号:TP242.3
基金项目:江苏省研究生创新基金项目(SJCX221930)
作者简介:张溟睿(2000 – ),男,硕士研究生,研究方向为海工装备数字化理论与方法
参考文献:
[1] SARIGIGUZEL F, KILAVUZ A, OZGOREN M, et al. Experimental investigation of free-surface effects on flow characteristics of a torpedo-like geometry having a cambered nose[J]. Ocean Engineering, 2022, 253: 111174.
[2] 贲可荣, 王斌. 海洋装备智能化与智能化装备思考[J]. 江苏科技大学学报(自然科学版), 2021, 35(2): 1-11.
[3] 徐硕, 姜言清, 李晔, 等. 智能水下机器人自主回收的双目视觉定位[J]. 哈尔滨工程大学学报, 2022, 43(8): 1084-1090.
[4] 张志春, 赵远飞, 镡志伟. 水域救援用水下机器人的发展现状与趋势[J]. 机电工程技术, 2024, 53(3): 17-21.
[5] 马镜, 兰飞翔, 游航. 高速水下无人航行器仿生外形设计与阻力数值预报研究[J]. 应用科技, 2024, 51(1): 158-165.
[6] 陈东军, 吴家鸣. 带缆水下机器人控制仿真模拟与水动力分析[J]. 船舶力学, 2020, 24(2): 170-178.
[7] NOURI N M, ZEINALI M, JAHANGARDY Y. AUV hull shape design based on desired pressure distribution[J]. Journal of Marine Science and Technology, 2016, 21(2): 203-215.
[8] IGNACIO L C, VICTOR R R, FRANCISCO D R R, et al. Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea[J]. Ocean Engineering, 2019, 187: 106184.
[9] ALVAREZ A, BERTRAM V, GUALDESI L. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth[J]. Ocean Engineering, 2009, 36(1): 105-112.
[10] 吴利芸, 李坤. 基于2D-PIV技术的三维湍流流场测量方法[J/OL]. 中国测试 [2023-11-13].
[11] 何慧灵. 基于粒子成像的水下流速场探测方法的研究[D]. 武汉: 华中科技大学, 2012.
[12] 张弩, 明付仁, 吴国民, 等. 舰船舷侧防御纵壁弧形支撑结构水下接触爆炸的防护效果研究[J]. 船舶力学, 2019, 23(10): 1257-1265.
[13] GONZALEZ J, BENEZRA A, GOMARIZ S, et al. Limitations of linear control for Cormoran-AUV[C]//Barcelona, Spain: IEEE, 2012.
[14] 陈原, 于飞, 李静. 多种运动模式下水下机器人导管螺旋桨的敞水性能研究[J]. 船舶力学, 2018, 22(8): 935-943.
[15] 卜永波, 陈一. 一种快速傅里叶算法优化的方法[J]. 内蒙古农业大学学报(自然科学版), 2012, 33(Z1): 232-236.