在无人水下机器人(UUV)朝着大型化的发展中,更多的大型UUV搭载X型舵。为了获取X舵大型UUV的水动力系数和可视化的流场矢量图,本文采用计算流体力学(CFD)的方式,首先在STAR-CCM+中以SUBOFF艇型为标准建模X舵大型UUV,再进行斜航、回转以及PMM仿真,拟合数据求得相应的水动力系数。最后将得到的无因次水动力系数和动稳定性系数和十字舵型SUBOFF作对比,结果显示X舵的大型UUV速度系数与SUBOFF较为一致,角速度系数相差在30%以内,加速度系数差别较大,整体系数绝对值高于十字型舵,在垂直面具有更好的动稳定性。该研究对搭载X舵的大型水下航行器的水动力性能研究和运动控制有重要参考意义。
In the development of unmanned underwater vehicles (UUVs) towards larger sizes, more large UUVs are equipped with X rudder. To obtain the hydrodynamic coefficients and visualize the flow field vector diagram of large UUVs with X rudder, this study uses Computational Fluid Dynamics (CFD). First, an X rudder large UUV model is created in StarCCM+ based on the SUBOFF hull shape. Then, simulations for oblique towing, turning, and PMM (Planar Motion Mechanism) tests are conducted to fit experimental data and derive the relevant hydrodynamic coefficients. Finally, the obtained dimensionless hydrodynamic coefficients and dynamic stability coefficients are compared with those of the SUBOFF with cross-rudders. Results show that the velocity coefficient of the large UUV with X rudder is similar to that of the SUBOFF, with angular velocity coefficients differing by less than 30%, while acceleration coefficients show greater discrepancies. The overall coefficients have higher absolute values than those of the cross-rudder design, providing better dynamic stability in the vertical plane. This study offers significant reference value for the hydrodynamic performance analysis and motion control of large underwater vehicles equipped with X rudder.
2025,47(5): 56-61 收稿日期:2024-11-15
DOI:10.3404/j.issn.1672-7649.2025.05.009
分类号:U661.33
基金项目:国家重点研发计划资助项目(2023YFC2809701)
作者简介:倪小萌(1999 – ),男,硕士研究生,研究方向为水下机器人操纵性
参考文献:
[1] 张淏酥, 王涛, 苗建明, 等. 水下无人航行器的研究现状与展望[J]. 计算机测量与控制, 2023, 31(2): 1-7.
[2] 刘彦伯, 刘志浩. 大型无人潜航器研究现状及作战应用分析[J]. 舰船电子工程, 2022, 42(11): 1-3,7.
[3] RODDY R F. Investigation of the stability and control characteristics of several configurations of the DARPASUBOFF Model (DTRC Model 5470) from captive-model experiments[C]//David Taylor Research Center: Bethesda, MD, USA, 1990.
[4] 曹植珺, 肖昌润, 李士强, 等. X 舵与十字舵潜艇稳定性对比分析[J]. 舰船科学技术, 2021, 43(4): 51-55.
CAO Z J, XIAO C R, LI S Q, et al. Comparative analysis of stability of X-rudder and C-rudder submarine[J]. Ship Science and Technology, 2021, 43(4): 51-55.
[5] 董苗苗, 张喜秋, 于昌利, 等. 潜体水动力系数计算研究综述[J]. 舰船科学技术, 2019, 41(1): 1-6.
DONG M M, ZHANG X Q, YU C L, et al. Research development on calculation of underwater vehicle's hydrodynamic coefficients[J]. Ship Science and Technology, 2019, 41(1): 1-6.
[6] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
[7] 冯康佳, 胡芳琳, 刘乐. 平面运动机构试验 CFD 仿真影响因素分析[J]. 船舶工程, 2020, 42(4): 44-48.
[8] LIN Y H, TSENG S H, CHEN Y H. The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the Planar Motion Mechanism tests[J]. Ocean Engineering, 2018, 170: 120-135.
[9] 张大朋, 严谨, 赵博文, 等. 全附体潜艇的PMM仿真实验[J]. 中国海洋大学学报(自然科学版), 2023, 53(3): 98-109.