水下作业机器人一般结构复杂,其水动力模型往往具有高度非线性。为建立水下作业机器人的精确运动模型,首先基于黏流理论采用CFD软件STAR-CCM+对复杂构型水下作业机器人开展直航运动、斜航运动和平面运动机构运动模拟,得到水下作业机器人简单运动下各自由度上的水动力和力矩;然后针对不同的水动力导数型式,采用最小二乘法进行水动力导数辨识;最后,基于CFD软件计算的水下作业机器人二维回转运动的水动力计算结果,探讨不同水动力导数型式下复杂构型水下作业机器人水动力模型的精确性。本文可对复杂构型水下作业机器人的水动力导数型式选择和计算提供参考,并为其操纵性预报奠定基础。
The ROV with complex configurations makes its hydrodynamic models show high nonlinearity. In order to construct the dynamic model of the ROV with complex configurations, simulations are carried out using CFD software STAR-CCM+ based on viscous flow theory. The hydrodynamic forces and moments in all degree of freedom are calculated by simulating the head motion, oblique motion, and planar motion mechanism (PMM) motion. Additionally, the hydrodynamic coefficients are fit using the the least squares method. Finally, the hydrodynamic results of 2D yaw motion calculated based on different hydrodynamic coefficient are compared with those computed by CFD software to validate the accuracy of the presented modelling method. This study provides an insight into calculating the hydrodynamic coefficients of open-frame ROV and prepares for maneuverability prediction.
2025,47(5): 68-75 收稿日期:2024-7-8
DOI:10.3404/j.issn.1672-7649.2025.05.011
分类号:U664
基金项目:广东省重点领域研发计划(第六批)项目(2020B1111010001)
作者简介:何丽思(1999 – ),女,硕士研究生,研究方向为水下潜器水动力与运动控制
参考文献:
[1] GUO H, ZOU Z. System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests[J]. Applied Ocean Research, 2017, 6811-6825.
[2] LIU Y, ZOU L, ZOU Z, et al. Predictions of ship maneuverability based on virtual captive model tests[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 334-353.
[3] 刘冬雨, 高霄鹏, 霍聪. 槽道型无人双体船操纵性预报研究[J]. 船舶力学, 2024, 28(4): 501-512.
LIU D Y, GAO X P, HUO C. Maneuverability prediction of channel-type unmanned catamarans[J]. Journal of Ship Mechanics, 2024, 28(4): 501-512.
[4] 刘晨飞, 刘亚东. 基于CFD船舶操纵性预报方法研究[J]. 海洋工程, 2018, 36(6): 109-115.
LIU C F, LIU Y D. A CFD-baced research on the method of predicting ship maneuverability[J]. The Ocean Engineering, 2018, 36(6): 109-115.
[5] 黎欣昌, 李文魁. 便携式AUV水动力系数数值模拟[J]. 舰船科学技术, 2023, 45(3): 61-65.
LI X C, LI W K. Numerical simulation of portable AUV hydrodynamic coefficient[J]. Ship Science and Technology, 2023, 45(3): 61-65.
[6] 吴兴亚, 高霄鹏. 基于操纵运动方程的水动力导数计算方法研究[J]. 舰船科学技术, 2017, 39(1): 26-31.
WU X Y, GAO X P. Research on calculation on method of hydrodynamic derivatives based maneuvering equation[J]. Ship Science and Technology, 2017, 39(1): 26-31.
[7] 褚洪贵, 王志东, 凌宏杰. 复杂构型水下机器人水动力导数及运动性能预报[J]. 中国海洋平台, 2021, 36(3): 25-30+35.
CHU H G, WAND Z D, LING H J. Hydrodynamic derivatives and motion performance prediction for complex underwater vehicle[J]. China Offshore Platform, 2021, 36(3): 25-30+35.
[8] 薛乃耀, 王冬姣, 叶家玮, 等. 开架式水下机器人操纵性水动力系数计算[J]. 广东造船, 2020, 39(1): 25-28.
XUE N Y, WANG D J, YE J W, et al. Maneuverability coefficients calculation of an open-frame underwater remote operated vehicle[J]. Guangdong Shipbuilding, 2020, 39(1): 25-28.
[9] MANSOORZADEH S, JAVANMARD E. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods [J]. Journal of Fluids and Structures, 2014, 51: 161-171.
[10] ITTC. Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures[S]. Recommended Procedures and Guidelines, 2017. 7.5-03-01-01.
[11] 许孟孟, 冯正平, 毕安元, 等. 复杂外形潜水器旋转水动力的计算[J]. 上海交通大学学报, 2018, 52(7): 764-769.
XU M M, FENG Z P, BI A Y, et al. Rotational hydrodynamic calculation of complex-shaped underwater vehicle[J]. Journal of Shanghaijiaotong University, 2018, 52(7): 764-769.