为研究槽道推进器在AUV槽道内的水动力性能,基于一款AUV槽道结构设计一款槽道推进器,采用计算流体力学(CFD)方法对包含槽道推进器在内的AUV进行系泊条件及有横移速度时的数值模拟,通过对AUV外部流场与槽道内流场进行分析,探究了在以上2种情况下槽道推进器正反转产生的推力、扭矩及功率等特征。结果表明,AUV横移时所需要的横向总推力不仅由槽道推进器提供,AUV艇身由于螺旋桨抽吸作用产生的压力差也会提供一定的附加推力;在系泊条件下,槽道推进器提供的横向推力占比为53.2%~54.0%,AUV艇身提供推力占比为38.6%~39.3%,并且螺旋桨正转时,桨推力、扭矩及功率与反转时的数值相差3.8%;当有横移速度时,横向总推力主要由槽道推进器提供,AUV艇身提供的推力占比为12.8%。
In order to study the hydrodynamic performance of the channel thruster in the AUV channel, a channel thruster is designed based on an AUV channel structure. The computational fluid dynamics ( CFD ) method is used to simulate the mooring conditions and the lateral velocity of the AUV including the channel thruster. By analyzing the external flow field of the AUV and the flow field in the channel, the characteristics of thrust, torque and power generated by the forward and reverse rotation of the channel thruster in the above two cases are explored. The results show that the total lateral thrust required for AUV lateral movement is not only provided by the channel thruster, but also the pressure difference generated by the propeller suction of the AUV hull will provide a certain additional thrust. Under the mooring condition, the lateral thrust provided by the channel thruster accounts for 53.2 % ~ 54.0 %, and the thrust provided by the AUV hull accounts for 38.6 % ~ 39.3 %. When the propeller is rotating, the thrust, torque and power of the propeller are 3.8 % different from those when the propeller is rotating. When there is a lateral velocity, the total lateral thrust is mainly provided by the channel thruster, and the thrust provided by the AUV hull accounts for 12.8 %.
2025,47(5): 76-81 收稿日期:2024-4-27
DOI:10.3404/j.issn.1672-7649.2025.05.012
分类号:U665
作者简介:张冬楠(1999 – ),男,硕士研究生,研究方向为水下推进器
参考文献:
[1] 肖智俊, 贺伟, 黄菀宸, 等. 槽道式侧推器水动力性能研究进展和展望[J]. 推进技术, 2022, 43(6): 39-53.
[2] 刘震宇, 郁程, 杨晨俊. 侧推器CFD计算初步研究[C]//2013年船舶水动力学学术会议, 2013.
[3] 杨星晨, 叶金铭, 肖昌润, 等. 基于URANS模型的槽道侧推器水动力性能数值计算方法[J]. 舰船科学技术, 2023, 45(11): 59-64.
YANG X C, YE J M, XIAO C R, et al. Research on numerical method of hydrodynamic performance of channel thruster based on URA-NS model[J]. Ship Science and Technology, 2023, 45(11): 59-64.
[4] 姚震球, 严周广. 侧向推进器水动力性能数值分析与验证(英文)[J]. 船舶力学, 2016, 16(3): 236-245.
[5] 沈海云. 可调侧推器设计与水动力性能仿真研究[D]. 杭州:浙江大学, 2012.
[6] 原田宁, 叶金铭, 史宝雍. 槽道侧推水动力计算方法研究[J]. 舰船科学技术, 2022, 44(10): 26-32.
YUAN T N, YE J M, SHI B Y. Research on CFD method of channelpush[J]. Ship Science and Technology, 2022, 44(10): 26-32.
[7] 刘辉, 冯榆坤, 陈作钢, 等. 船舶艏侧推器脉动压力数值计算[J]. 上海交通大学学报, 2017, 51(3): 294-299.
[8] 郁程. 侧推器水动力性能与设计方法研究[D]. 上海:上海交通大学, 2020.
[9] KAZEMI M, KORNEV N, HINNENTHAL J. Scale resolving simulation of unsteady bow thruster hydrodynamics[J]. Ocean Engineering, 2024, 298: 117212.
[10] YUKUN F, ZUOGANG C, YI D, et al. An experimental and numerical investigation on hydrodynamic characteristics of the bow thruster[J]. Ocean Engineering, 2020, 209: 107348.
[11] YUKUN F, ZUOGANG C, YI D, et al. Multi objective optimization of a bow thruster based on URANS numerical simulations[J]. Ocean Engineering, 2022, 247: 110784.
[12] ABRAMOWICZ-GERIGK T, GERIGK M K. Experimental study on the selected aspects of bow thruster generated flow field at ship zero speed conditions[J]. Ocean Engineering, 2020, 209: 107463.
[13] ENGLISH J W. Further considerations in the design of lateral thrust units[M]. National Physical Laboratory, 1964.