针对欠驱动自主水下航行器在跟踪路径上存在障碍物、控制输入存在约束、以及外部环境扰动和动力学模型均未知的条件下的三维路径跟踪问题,提出一种具有避障功能的非线性模型预测控制(NMPC)方法。首先,在传统视线制导策略中引入基于路径偏差的自适应制导纵荡速度,并在此基础上加入改进的人工势场制导方案,使用势场合力来计算避障航向角。然后,设计有限时间扩张状态观测器对未知动力学模型和环境扰动组成的总扰动进行估计。最后,利用总扰动的估计值重构动力学模型,完成基于NMPC三维路径跟踪控制器设计。结果表明,本文提出的控制方法能够完成对三维轨迹的跟踪并有效躲避障碍物。研究成果可为AUV的水下探测作业提供一定参考。
Addressing the three-dimensional path-following problem of underactuated autonomous underwater vehicles (AUV) in the presence of obstacles along the tracking path, constrained control inputs, and unknown external environmental disturbances and dynamics models, a nonlinear model predictive control (NMPC) method with obstacle avoidance capability is proposed. Initially, an adaptive guidance longitudinal oscillation velocity based on path deviation is introduced into the traditional line-of-sight guidance strategy. Building upon this, an enhanced artificial potential field guidance scheme is incorporated to calculate the avoidance heading angle using the resultant force from the potential field. Subsequently, a finite-time extended state observer is designed to estimate the total disturbance composed of unknown dynamics models and environmental disturbances. Finally, the estimated value of the total disturbance is utilized to reconstruct the dynamic model, completing the design of the NMPC-based three-dimensional path-following controller. The results show that the effectiveness of the proposed control method in achieving three-dimensional path-following and effective obstacle avoidance is verified. The research results can provide some reference for AUV underwater exploration operations.
2025,47(5): 82-88 收稿日期:2024-8-23
DOI:10.3404/j.issn.1672-7649.2025.05.013
分类号:U671.99
基金项目:中央高校基本科研业务费专项资金项目(3132019344);大连海事大学领军人物项目(00253007)
作者简介:余明裕(1962 ? ),男,教授,研究方向为人工智能、智能控制、感知与识别、机器人与自动化
参考文献:
[1] MATOUŠ J, PETTERSEN KY, VARAGNOLO D, et al. Singularity-free formation path following of underactuated AUVs[J]. IFAC-PapersOnLine, 2023, 56(2): 6731-6738.
[2] LAMRAOUI HC, QIDAN Z. Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances[J]. Applied Ocean Research, 2019, 86: 40-46.
[3] TANAKITKORN K, WILSON PA, TURNOCK SR, et al. Sliding mode heading control of an overactuated, hovercapa- ble autonomous underwater vehicle with experimental verification[J]. Journal of Field Robotics, 2018, 35(3): 396-415.
[4] WANG N, SUN Z, YIN J, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059-14070.
[5] LIANG X, QU X, WAN L, et al. Three-dimensional path following of an underactuated AUV based on fuzzy backstepping sliding mode control[J]. International Journal of Fuzzy Systems, 2018, 20: 640-649.
[6] WANG W, CHEN Y, XIA Y, et al. A fault-tolerant steering prototype for x-rudder underwater vehicles[J]. Sensors, 2020, 20(7): 1816.
[7] STOKEY RP, ROUP A. Development of the REMUS 600 autonomous underwater vehicle[C]//Proceedings of Oceans 2005 MTS, 2005.
[8] 夏元清, 付梦印, 邓志红, 等. 滑模控制和自抗扰控制的研究进展[J]. 控制理论与应用, 2013, 30(2): 137-147.
[9] MARTHINIUSSEN R, VESTGARD K, et al. HUGIN-AUV concept and operational experiences to date[J]. Oceans' 04 MTS, 2004(2): 846-850.
[10] 裴志远. 基于改进LOS引导律与ESO估计漂角的无人船路径跟踪控制方法[D]. 北京: 中国石油大学(华东), 2021.
[11] ROPER D, HARRIS CA, SALAVASIDIS G, et al. Autosub long range 6000: A multiple-month endurance AUV for deep-ocean monitoring and survey[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1179-1191.
[12] 崔恒银. 双体无人船路径跟踪控制研究[D]. 大连: 大连海事大学, 2021.
[13] ZHAO L, ZHANG B, YANG H, et al. Finite-time tracking control for pneumatic servo system via extended state observer[J]. IET Control Theory and Applications, 2017, 11(16): 28