为提高自主水下机器人动力控位系统的控制精度,延长水下作业时间,提出一种与灰狼优化算法相结合的广义既约梯度法对自主水下机器人进行推力分配。该方法通过计算目标函数的既约梯度获取其下降方向,通过灰狼优化算法在下降方向上进行一维搜索获取符合约束条件的更优解,经过多次迭代获取到目标函数的全局最优解。通过仿真模拟对算法性能进行测试。仿真结果表明,相比于传统推力分配算法,广义既约梯度法能更有效地降低能耗、减少推力饱和问题。
To improve the control accuracy of the power control system of AUV (Autonomous Underwater Vehicle) and extend the underwater operation time, a GRG (Generalized Reduced Gradient) method combined with grey wolf optimization algorithm is proposed for thrust allocation of AUV. This method obtains the descent direction of the objective function by calculating its reduced gradient, and uses the grey wolf optimization algorithm to conduct one-dimensional search in the descent direction to obtain a more optimal solution that meets the constraint conditions. After multiple iterations, the global optimal solution of the objective function is obtained. This article tests the performance of the algorithm through simulation. The simulation results show that compared to traditional thrust allocation algorithms, the generalized reduced gradient method can more effectively reduce energy consumption and thrust saturation problems.
2025,47(5): 103-111 收稿日期:2024-9-26
DOI:10.3404/j.issn.1672-7649.2025.05.016
分类号:TP242.6
作者简介:傅培成(2000 – ),男,硕士研究生,研究方向为水下机器人动力控位
参考文献:
[1] 刘胜, 段应坤, 张晶. X舵水下潜航器改进滑模控制策略研究[J]. 兵器装备工程学报, 2022, 43(9): 34-38+52.
LIU S, DUAN Y K, ZHANG J. Research on improved sliding mode control strategy of X-rudder autonomous underwater vehicle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(9): 34-38+52.
[2] 马晨龙. 多推进器AUV机动性能分析及推力分配研究[D]. 武汉: 武汉理工大学, 2022.
[3] 孙啸天, 曾庆军, 尚乐, 等. 基于推力分配的自主水下机器人推进器容错控制研究[J]. 软件导刊, 2023, 22(11): 118-122.
SUN X T, ZENG Q J, SHANG L, et al. Research on thruster fault tolerant control of autonomous underwater vehicle based on thrust distribution[J]. Software Guide, 2023, 22(11): 118-122.
[4] 魏延辉, 陈巍, 杜振振, 等. 深海ROV伺服控制方法研究及其仿真[J]. 控制与决策, 2015, 30(10): 1785-1790.
WEI Y H, CHEN W, DU Z Z, et al. Servo control method of ROV and simulation[J]. Control and Decision, 2015, 30(10): 1785-1790.
[5] TOR A, JOHANSEN T I, FOSSEN. Control allocation-A survey[J]. Automatica, 2013(49): 1087-1103.
[6] 李新飞, 马强, 袁利毫, 等. 作业型ROV矢量推进建模及推力分配方法[J]. 船舶力学, 2020, 24(3): 332-341.
LI X F, MA Q, YUAN L H, et al. Vector propelling system model and thrust allocation for work-class ROV[J]. Journal of Ship Mechanics, 2020, 24(3): 332-341.
[7] BORDIGNON K A, DURHAM W C. Closed-form solutions toconstrained control allocation problem[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1000-1007.
[8] 张瀚文, 王俊雄. 基于自适应反步滑模的 AUV 推进器容错控制[J]. 水下无人系统学报, 2021, 29(4): 420-427.
ZHANG H W, WANG J X, Fault-tolerant control of AUV thruster based on adaptive backstepping sliding mode[J]. Journal of Unmanned Undersea Systems, [1] 2021, 29(4): 420-427.
[9] SUN G W, XIE J R, QU J Q, et al. Multistep thrust allocation method based on priority idea for remotely operated vehicle with horizontal thrusters configured as X shape[J]. International Journal of Advanced Robotic Systems, 2022, 19(2).
[10] 孙功武, 苏义鑫, 毛英, 等. 基于模糊逻辑的混合推进ROV多级推力分配策略[J]. 机器人, 2023, 45(4): 472-482.
SUN G W, SU Y X, MAO Y, et al. Multi-level thrust allocation method based on fuzzy logic for a remotely operated vehicle with hybrid propulsion system[J]. Robot, 2023, 45(4): 472-482.
[11] 赵言锋, 林明星, 代成刚, 等. ROV水动力性能及推力控制分配研究与仿真[J]. 中国科学: 技术科学, 2020, 50(3): 287-298.
ZHAO Y F, LIN M X, DAI C G, et al. Research and simulation of ROV hydrodynamic performance and thrust control distribution[J]. Scientia Sinica Technologica, 2020, 50(3): 287-298.
[12] WITKOWSKA A, SMIERZCHALSKI R. Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming[J]. Ocean Engineering, 2018, 163: 570-582.
[13] ZHAO D, DING F, TAN J, et al. Optimal thrust allocation based GA for dynamic positioning ship[C]// 2010 IEEE. International Conference on Mechatronics and Automation, 2010: 1254-1258.
[14] 徐海祥, 马晨龙, 冯辉. 一种基于极限学习机的推力分配方法[J]. 华中科技大学学报, 2021, 49(12): 34-39+70.
XU H X, MA C L, FENG H. A thrust allocation method based on extreme learning machine[J]. J. Huazhong Univ. of Sci. & Tech. 2021, 49(12): 34-39+70.
[15] 陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005.
[16] SEYEDALI M, SEYED M M, ANDREW L. Grey Wolf optimizer[J]. Advances in EngineeringSoftware, 2014, 69(3): 46-61.
[17] 施生达, 王京齐, 吕帮俊, 等. 潜艇操纵性[M]. 北京: 国防工业出版社, 2021.
[18] 严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
[19] 徐海祥. 船舶动力定位系统原理[M]. 北京: 国防工业出版社, 2016.
[20] CHE G F, ZHEN Y. Backstepping method tracking control for underactuated AUV with unknown dynamics based on action-critic networks based ADP[J]. Journal of intelligent & fuzzy systems, 2024, 46(1): 2851-2863.
[21] ESFAHANI, ZAHRA, FEREIDAN, et al. Sliding mode controller design based on state estimation for underactuated AUVs in the presence of time-varying disturbances and uncertainties[J]. International journal of dynamics and control, 2023, 11(4): 1637-1652.
[22] 李旻, 周铸, 吕志彪, 等. 基于改进反步法的AUV直线路径跟随[J]. 舰船电子工程, 2023, 43(2): 47-53.
LI M, ZHOU Z, LV Z B, et al. AUV straight-line path following based on improved backstepping method[J]. Ship Electronics Engineering, 2023, 43(2): 47-53.