在复杂海流干扰情况下,针对欠驱动自主水下机器人(AUV)运动控制的鲁棒性问题,本文提出了一种新的自适应反步控制策略(IABC)。该策略的核心在于构建一个高效的海流干扰估计模块,该模块能够实时在线辨识海流动态,为控制器提供即时的补偿信号。鉴于传统反步控制方法(BC)在处理复杂系统时易出现的“微分爆炸”难题,设计一阶滤波器生成控制指令所需的虚拟导数,保证控制系统的稳定性和平滑性。仿真结果表明,在航向和深度控制上,IABC方法均展现出了更高的控制精度与更强的抗干扰能力。在时变海流场景下,IABC航向误差降低了32.9%,深度误差降低了36.2%。在随机海流场景下,IABC航向误差降低了3.5%,深度误差降低了5%。
In complex ocean current disturbances, to address the robustness issues of motion control for underactuated autonomous underwater vehicles (AUVs), this paper proposes a new adaptive integral backstepping control strategy (IABC). The core of this strategy involves building an efficient ocean current disturbance estimation module, which can identify ocean current dynamics in real-time and provide immediate compensation signals to the controller. Given the ‘differential explosion’ problem commonly encountered in traditional backstepping control methods (BC) when handling complex systems, a first-order filter was designed to generate the virtual derivatives required for control commands, ensuring the stability and smoothness of the control system. Finally, simulation results show that the IABC method exhibits higher control accuracy and stronger disturbance rejection capabilities in heading and depth control. In time-varying ocean current scenarios, the heading error of IABC decreased by 32.9%, and the depth error decreased by 36.2%. In random ocean current scenarios, the heading error of IABC decreased by 3.5%, and the depth error decreased by 5%.
2025,47(5): 138-145 收稿日期:2024-9-27
DOI:10.3404/j.issn.1672-7649.2025.05.021
分类号:U674.91;TP273
基金项目:2021年度湛江市促进经济高质量发展专项(060302072202);2023广东省普通高校重点领域专项(A21705);海洋防务技术创新中心创新基金(JJ-2023-715-01)
作者简介:陈庆东(1999 – ),男,硕士研究生,研究方向为水下机器人运动控制
参考文献:
[1] ZHANG X, JIANG K. Backstepping-based adaptive control of underactuated AUV subject to unknown dynamics and zero tracking errors[J]. Ocean Engineering, 2024, 302: 117640.
[2] THOR I FOSSEN. Handbook of marine craft hydrodynamics and motion control[M]. Hoboken: John Wiley & Sons, Inc. , 2011.
[3] QIAO L, ZHANG W. Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2018, 44(2): 363-385.
[4] LAMRAOUI H C, ZHU Q. Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances[J]. Applied Ocean Research, 2019, 86: 40–46.
[5] 楼鉴路, 李文魁, 周铸, 等. 基于线性自抗扰控制的AUV深度控制研究[J]. 舰船科学技术, 2023, 45(6): 96-101.
LOU J L, LI W K, ZHOU Z, et al. Research on AUV depth control based on linear active disturbance rejection control[J]. Ship Science and Technology, 2023, 45(6): 96-101.
[6] 胡中惠, 沈丹, 王磊, 等. AUV水下空间运动自动控制仿真[J]. 舰船科学技术, 2023, 45(12): 57-62.
HU Z H, SHEN D, WANG L, et al. Research on automatic control simulation of AUV underwater space motion[J]. Ship Science and Technology, 2023, 45(12): 57-62.
[7] 吕厚权, 郑荣, 杨斌, 等. 水下自主机器人航向控制算法应用研究[J]. 舰船科学技术, 2020, 42(3): 108-114.
LV H Q, ZHENG R, YANG B, et al. Application research of heading control algorithm for AUV[J]. Ship Science and Technology, 2020, 42(3): 108-114.
[8] AN S, WANG L, HE Y. Robust fixed-time tracking control for underactuated AUVs based on fixed-time disturbance observer[J]. Ocean Engineering, 2022, 266: 112567.
[9] LI X, REN C, MA S, et al. Compensated model-free adaptive tracking control scheme for autonomous underwater vehicles via extended state observer[J]. Ocean Engineering, 2020, 217: 107976.
[10] YAN Z, WANG M, XU J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics[J]. Ocean Engineering, 2019, 173: 802-809.
[11] CHE G F and YU Z. Backstepping method tracking control for underactuated AUV with unknown dynamics based on action-critic networks based ADP. Journal of Intelligent & Fuzzy Systems. 2024, 46(1): 2851–2863.
[12] FANG K, FANG H, ZHANG J, et al. Neural adaptive output feedback tracking control of underactuated AUVs[J]. Ocean Engineering, 2021, 234: 109211.
[13] CHU Z, XIANG X, ZHU D, et al. Adaptive trajectory tracking control for remotely operated vehicles considering thruster dynamics and saturation constraints[J]. ISA Transactions, 2020, 100: 28-37.
[14] ZHANG Y, LIU J, YU J. Adaptive asymptotic tracking control for autonomous underwater vehicles with non-vanishing uncertainties and input saturation[J]. Ocean Engineering, 2023, 276: 114280.
[15] 王郁茗, 李博, 周义勇, 等. 海流环境下AUV航行偏移影响研究[J]. 兵工自动化, 2022, 41(10): 88-91.
[16] 刘金琨. 滑模变结构控制Matlab仿真[M]. 北京: 清华大学出版社, 2015.
[17] 王庆楠, 王娜, 李广有, 等. 基于干扰观测器的AUV三维路径滑模跟踪控制[J]. 机械制造与自动化, 2024, 53(3): 209-214.
[18] YUFEI XU, LEI WAN , ZIYANY ZHANG, et al. Robust adaptive path following control of autonomous underwater vehicle with uncertainties and communication bandwidth limitation[J]. Ocean Engineering, 2023, 287: 115895.
[19] MCCUE, LEIGH. Handbook of marine craft hydrodynamics and motion control[J]. IEEE Control Systems, 2016, 36(1): 78-79.